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Introduction

First, I would like to thank my mentors who endured me and my ignorance. I learnt many
things with them.

Un petit mot en frangais pour remercier ma famille et mes amis (de 'ENS et d’ailleurs) :
c’est grace a leur soutien que j’ai réussi a devenir normalien cette année.

The purpose of my internship was to become familiar with the dyadic analysis, especially
dyadic harmonic analysis. I learnt a lot of things in modern Fourier analysis which theory has
only fifty years of existence. Among the most famous people who developped this theory we
can quote Calderon, Zygmund, Littlewood, Paley, Meyer, Tao and so on...

The first part of this internship report is here to set all the definitions and small results we
will need in the last two parts.

In the second part, we give the proof of the boundedness of the square operator in different
cases, looking at its linearization. This is in this part that I had to make, thanks to advises
from my mentors, my own proofs of certain results already known, using their new methods.

In the third and last part, we present a dyadic proof of the T'(1)-theorem which gives a
necessary and sufficiant condition for the L?-boundedness of singular integral operators. The
proof is based on Haar functions.

Notations
We write :
a.e. to say "almost every(where)”.
iff. to say ”if and only if”.
n € N* fixed.
(X, 1) a measure space (the measure is always supposed o-finite).
B(R™) the Borel algebra on R™.
L? the Lebesgue space of order p € [1, 00].
p’ the conjugate exponent of p: % + z% =1.
L} .(R) the set of all locally integrable measurable functions on R.
S(R™) the Schwartz space.
[P the space of sommable sequences at order p € [1, 0.
E[.].] the operator of conditional expectation.
A = {(z,z)/x € R"} the diagonal of R™.
Q the set of cubes in R™ (i.e. balls for the uniform metric).
AS Btosay 3C e RJA < OB,
A~ Btosay 3C ¢ R,C'B < A< CB.
Al the interval with the same center than the interval I but A larger (for A € N).



1 Necessary definitions and results to begin

1.1 Dyadic analysis on the line
1.1.1 Dyadic intervals

Definition 1. We call an interval of the form Iy, = [k2", (k + 1)2"[, where
(k,n) € Z. n (or sometimes 2") is called of the dyadic interval Iy .

We write D the set of all the dyadic intervals of R.

We write D' the set of all the dyadic intervals contained in [0, 1].

We have the immediate properties :
Proposition 1.
o VneZ,Vr e R, A, x € I,
o VI =[a,bl€ D, I, := [a, “L2[€ D and I, := [t b€ D.
o V(I,J)eD?, if INJ#0D, then I C J orJCI.
Remark : [; is called the lc [ and I, is called the . 1 is called the
We write [; =1 and I, = 1.

D! can be represented as a binary tree, where the root is [0, 1], and the above vocabulary comes
from the informatical theory of trees.

1.1.2 Haar functions

Definition 2. For all I € D, we set

hr is called

Remark : Haar functions are the more simple example of wavelets (revolutionary theory in
Fourier analysis developped by Meyer).

Definition 3. Let (E, ||.||) be a normed vector space on a field K. Let (e,)nen € EV.
We say that (en)nen 1S a if

! N — =
Ve e B, (z,) € K ,HETOO |z kz;xkekﬂ 0

and in this case, we write

oo
T = g TpEn-
n=0
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Remarks :
e Thanks to the property of uniqueness, the family (e, ),en is free.
e A Hilbert basis is a special case of Schauder basis in a Hibert space.

Lemma 1. For all p € [1,00[, (hr)epr s a Schauder basis in LP(]0,1]), orthonormal in
L2([0,1]).

Proof : We just prove that it is a Hilbert basis of L?([0,1]), because it is only that fact we
will use in the following parts.

o Let (I,J) € (D')2.
1
« If I'NJ =0, then obviously, / hi(z)hs(z)dz = 0.
0

« I T = J, then/ hi(2)hy(z )dx_/(hf( ) dx—m/ 1;(x)dz = 1.

x If INJ #Qand I # J, then I & J or J & I, by properties of dyadic intervals. By
symmetry of the roles of I and J, let’s assume that I & J. Then [ C J; or I C J,. Still
by symmetry and properties of dyadic intervals, let’s assume that I C J;. Then

! 1 ! 1 1] |1
hi(x)hy(x)dr = ——— 1n(x) = 1, (z)de = ——— (= =0.
J et <|f||J|>§/ N TV EA I

1
o Let f € V@Ct((h[)[epl)l. Then VI € Dl,/ f(z)hi(x)dx = 0.
0

[0, 1]
: ) y
x We consider F : y / f(w)dz
0

Let I € D'. We can write

on 2n+1 ) om

[2" 2"+2n+1 [

where (n, k) is such that m = 2" + k and k € [0,2" — 1].
Then, the orthogonal hypothesis imposes

2k+1 2k+42
on+1 n on—+1 n
/ 22 f(x)dx — / 22 f(x)dx =0

2k 2k+1

on+1 on+1

which gives
2k 2k +1 2k + 2
_F<2n+1)+2F< on+1 ) — on+1 ) =0.

Thanks to a trivial induction we have that F'(d) = 0 for all dyadic number in [0, 1].
x Moreover, thanks to the Cauchy-Schwarz inequality, we have

o) € 0P NFG) ~ FO) =1 [ 1O < 17y

Hence, F is continuous on [0, 1] and equal to 0 on the dense subset of [0, 1] formed by the
dyadic numbers. So F' = 0 and then f = 0.

Thus, V@Ct((h[)[eDI)J— = {0}, and then (h;);epr is a Hilbert basis of L?([0,1]).

Remark : In the previous proof, we can see that the Haar system (h;) ep still forms a Hilbert

basis of L?(R).



1.2 Some important spaces

In this paragraph, we introduce spaces we will work with. We present them in a general
background, but we will only use them in R. The spaces presented here are often used in PDE
and in Fourier analysis.

1.2.1 Weak-LP? spaces

This is an extansion of LP spaces. We use them to deduce, through the Marcinkiewicz interpo-
lation theorem (Theorem 1), the LP boundedness of some operators.

Definition 4. Let p € [1,00[. Let (X, u) be a mesure space. We call
the set of u—mesurable functions such that

sup Nu{z € X/|f(x)] > A} < oc.
A>0

We write it
Then we define the following semi-norm on this space by

=

P

Il = (00X € /1701 > 2}

We set L*>°(X, ) = L>=(X, ).
Remarks : Thanks to (Tchebychev-)Markov’s inequality :
VA >0, Xz e R"/|f(x)] > MM < [IfI5,

we have
LP(X, p) € LP(X, ).

=

R
But we don’t have the equality. For example in R, we consider f : - : . We know that

1
f & L*(R) (Riemann integral), but VA > 0, [{z € R/|f(z)| > A} =[] — 1, %[:{{OH =2,
So
sup Al {z € R/|f(z)| > A\}| =2 < +o0.
A>0

So f € LM (R).

1.2.2 Hardy spaces

We do not define Hardy spaces as it is usual to do, but by an equivalant : the atomic decom-
position.

Moreover, we consider the dyadic form of this space (because we will need dyadic properties in
section two).

We write Q, the set of all dyadic cubes in R (i.e. cubes with dyadic sides).

Definition 5. Let p € [1,00|. Let Q € Qq. Let a : QQ — C be a mesurable function. We say
that a 1s a if it satisfies :

o supp(a) C Q.

e [la]l, < T

QI



. /Q a(x)dz = 0,

We denote the collection of p-atoms on Q by A7), and we set AP = U A
Q€eQq

Definition 6. Let p €]1,00|. We define the as
HY = {f € L'(R")/3(ai)ien € (A")",3(Ni)ien € I'(N,C), f = i Aitti) }-
i=0
We define the norm associated :
[l = (M oo/ = 3 ).
i=0

Actually, (H"?_||.||z1.») is a Banach space, and Vp €]1, 00[, H'? = H"> C L'(R"), thus we
can define the as H' = H'? for p €]1, o0], associated with its norm (see [AUS12]).
The ideas of the proof :

The inclusion in L' is immediate by definition.
We want to show that (HYP, ||.|[g1e) = (H, || || g ).

e The inclusion D is easy by Holder inequality.

e We show C using a good Calderon-Zygmund decomposition : for every p-atom a, we write

a="b+ g with [|b]|zn1» < 3 and [|g||gr.~ S 1. Then as every function in ' is a sum of

p-atoms, we can conclude with an iteration argument.

1.2.3 BMO spaces

Singular integral operators, we introduce in the next paragraph, don’t map L (R") into L>(R")
(see Theorem 9). The good space to consider is the Bounded Mean Oscillation (BMO) space.
This is the space of functions which don’t grow too far away from their average on every cube
of R™.

Definition 7. Let f € L, (R"). in a cube Q) € Qq is the number :

1
]é 0) = Jolde = & /Q (@) — folde

where fgo = %/ f(z)dz.
We set ¢
#e) = sl 170) ~ foldy/r € Q € Qub

Then we say that [ has , and we write f € BMO(R"), iff f# €
L>*(R"™) and we take :

1£llao = [1F#]loo-

Remark : Clearly, |[.|[samo is a semi-norm and L>*(R") € BMO(R™), with ||f|lsmo <
2||f|so- But we don’t have the equality.
Counter example :




Let f(z) = In|x|. We will show that f € BMO(R)\L*(R).
Let t > 0. We set "
flz) =n|—| =Infe| —Inft| = f(z) +c.

For I an interval of length ¢, and J an interval of unit length, we have by change of variables :

m/}\f(x)—m/lf(y)dy\dx: m/l|ft<l’)—m/lft<y)dy|dl’: m/J|f(x)—m/Jf(y)dy\d:c-

So we can consider only the case || = 1.

Let I = [xg — 3,20 + 3] where 7y € R.

By symmetry, we can suppose that xy > 0.

« If zy € [0, 3], then we set C; = 0 and we have :

T%ﬂﬁ@ﬁhzlﬁ@Wle]h@Wx<ﬂn

*x Otherwise, zy > 3.

Ve € I,|In(z) — In(zg — 3)| =

—_
=

—~

~—

— In(zg — %)

8

T—

<)
I
|

.
~

VAN
8
G DN |

(z =0+ 1)
(0 + 5 — 0+ 3)

/Al
[SRIN GV {N)

We set Cr = In(zo — 3), then

%/m@—@m:/m@—@mgg
1] J; I
In every case, we have :
1 9 (3
—/\f(a:)—CﬂdxgmaX —,/ |In |z||dz | = C.
1] J; 5 !
1 1 1
f=i [ fwd=g-covei- 3 [ =r-crv o [
1] J; 1] J; 1] J;

Hence

1
— y)dyldr < d )|dy = d

So f € BMO(R) and it is obvious that f & L*(R).
Thus

ot

But

L>(R) ¢ BMO(R).



An other important result is that we have (H'(R"))* = BMO(R") (see [AUS12]).
The ideas of the proof :

e We show that BMO = BMO, where BMO, ={f € L} / sup 100 / |f(x ra/Qf(y)dywx}

This is proved using John-Nirenberg’s inequality which states that the worst behaviour
for a BMO function is to blow up logarithmicaly.

e Then we build the isomorphism between (H?)* and BMO,. The difficulty is to show the
surjectivity. Actually, we build the application on atoms and we get the general case by
density using the Riesz representation theorem.

1.3 Main results
1.3.1 Interpolation

The idea of the interpolation is to get informations on ”intermediate” operators or spaces having
informations only on ”extremal” ones.

Definition 8. Let T be an operator on a vector space V' of complex-valued measurable functions
on (X, p) and taking values in the set of all complex-valued finite a.e. measurable functions on
(Y, v).

We say that T is if

Y(f.9) € VEVAE CIT(f + g)l <IT(H)I +T(g)l and |[T(Af)] = [MIT(f)].
Definition 9. Let T be a sublinear operator. Let (p,q) € [1,00]?. We say that
o T is of if T LP — L9 is bounded, 1.e.

30 > 0,Yf € L, ||ITf|le < CIIf -

o T is of if T LP — L% s bounded, 1.e.

3C > 0,Yf € LP, |T fllgoo < CII fllp-

We give a simple version of the Marcinkiewicz interpolation theorem, the one we will need
later. This is the theorem of real interpolation.

Theorem 1 (Marcinkiewicz interpolation theorem). Let (po, qo) € [1,00]? such that py < qo.
Let T' be a sublinear operateur defined on LFP°(X, pu) + L9 (X, u) which is of weak-type (po, po)
and weak-type (qo, qo)-

Then T is of strong-type (p,p), for all p €]po, qol-

Proof :

e First let’s show that Vp €|po, qof, L (X, ) C LPO(X, pu) + LP(X, ) (to justify that the
assertion of the theorem makes sens).
Let p €]po, qo[- Let f € LP(X, ). Let a > 0.

We set fia = flifj>a and foo = flifj<a- Thus f = fio + foa-
Moreover,

<0

/|f1 DPdu(s /|f1a P fra@)~ Pap(a) <a”°”/|fl D)Pdu(z) < +oo

8



>0

—_
/Wﬁ )| ®dp( /ﬁﬁa P foa ()00 — pw<<«wp/ﬁﬁ o)Pdp) < +oo.

So fl,a S LpO<X7 :u) and f2,a € LqO<X7 :u)
So
LP(X, p) C LP(X, ) + L (X, ).

o Let f e LP(X, p) fixed until the end of the proof.
+o0

We show that ||Tf[|b = p/ a? ' p{|Tf| > a}da. Actually this an immediate conse-
0
quence of the theorem of Fubini-Tonelli (F-T') :

+00 +0oo
pA o {|Tf| > a}da :(A igpiéhmbammummI
- /X/O pap’ll‘Tf‘M(x)dadu(a:)
= [ s = 17l

e We decompose f as before : f = fi o+ f2,, for a given a > 0.

We have :
p{ITf] > af < T fral > S+ 1{|T foul > 5}
7 sublinear ) o \ w“
< C (2l fralle)™ + Gl f2allo)™) -
T weak-type

where C' = maX(HTHpoﬁ(po,OO% ”T”qoﬁ(qo,OO))-
Hence :

TP < T LT %1y T LT %y
177l < b @ TRl > Yoty [ @ Tl > )da

/ oo 2 Po 0 +o0 9 0
< C (p/ aP! (a”fl,oc”po) do +p/ aP! (a||f27a||q0) da)
0
+o00 A
S CW%(/ (ﬂlwWﬁuwmxg/ (ﬁquﬁMWmo
F-T . .
s o (/ / (If @)1 psa(@) a0 + | f(2)[ 1) feal(@)a? ") dadu(x))
< oo+ )ww

Remark : We can reduce the hypothesis and replace ”weak-type (r,7)” by "for all A mea-
1

surable subset of X, ||T(14)]/r00 S p(A)7."
This is called the restrlcted type of interpolation (see [GRAF108]).

Now we give the theorem of complex interpolation : Riesz-Thorin interpolation theorem.
We speak about ”complex” interpolation beacause the proof uses complex analysis.

Theorem 2 (Riesz-Thorin interpolation theorem (see (GRAF108))). Let (po,q) € [1,00)?
such that py < qo. Let T' be a C-linear operateur defined on LP°(X, u) + L®(X, u) which is of
strong-type (po, po) with constant Cy, and of strong-type (qo, qo) with constant C,.

Then T is of strong- type (p,p), for all p €]po, qo[ with constant C' < C;O_GC'gO where 0 €]0, 1]

11— 9 9
such that b= + 2 o



1.3.2 Hardy-Littlewood maximal operator

Definition 10. The 1s defined by
1
Vo € RS € L (R"). M (0) = sup{ro: /Q F()ldy/z € Q € O},

The is defined by

A\ We are not working with dyadic cubes here.
Proposition 2.

o M is of weak-type (1,1).

e M is of strong-type (p,p), for all p €]1, co].

Proof :
This proof is the fist example in this intership report where we use a ”stopping time” argument :
we build a process where at each step we choose a ”good” collection of cubes (here) or intervals
(further) on which we control a certain quantity.

o Let fe Ll (R").

loc

* Let A > 0. Let x € R" such that M f(z) > A.
Then, there exists () € Q such that z € () and ﬁ/ |f(y)|dy > A
Q

Thus, {z € R"/M f(x) > A} is an open set in R™.
x Let K be a compact set in R™ such that

K Cc{z e R"/Mf(x) > \}.

N
With Borel-Lebesgue property, we have K C U Q;, where N € N* and for all i € [1, N],
i=1
Q; € Q and Qﬁ/ £ ()ldy >
Qi
For that, we give a ”stopping-time argument”. .
Let Q; be such that Jig € [1, N],Q, = Q;, and Vi € [1, N], |Q:| < |Q1]

We keep him and all other @) touching him, we form with them a collection C; and we
set

L ={ie[1,N]/Qi € Ci}.

Then, let Q5 such that Jj, € [1, N\, Qs = Qj, and Vi € [1, N]\I1,|Q:] < Q5. And
we repeat the process. N
Finally, we have built a family (Q););en such that

K] <3") Q.

jEN

10



[]

At step j, we get @; (in red) and we keep it and all blue cubes in the collection Cj.
At the end, as the (Q);) en are pairewise disjoint, we have :

CEED RSSOy AVOITESI T
JEN jEN

We conclude with the regularity of Lebesgue’s measure :
311
[{z € R"/M(z) > \}| = sup{| K| /K C { € R"/Mf(z) > A}, K compact} < | f]1.

So M is of weak-type (1,1).

o Clearly, Vf € L*(R"), M flloc < [[flloo-
So, thanks to Marcinkiewicz interpolation theorem, M is of strong-type (p,p) for all
p €)1, 00].

1.3.3 Square operator

The square operator is the heart of the Littlewood-Paley theory on which my mentors work.
Here we present its dyadic (so descreatized) form through Haar functions and its main proper-
ties. The next part of this internship report is dedicated to prove those results without using
the classical theory, but only ”simple” arguments.

Definition 11. We define the
by

Vo € Rn,Vf € Llloc( SIf <Z| f hf |h1 )| ) :

1€z
The is defined by
St f— Szf.

Proposition 3. The square operator is bounded on L*(R).

Proof :
Thanks to the orthogonal property of Haar functions, we have :

15zfll2 = (/Z\ fohr)he( )2dfﬁ> = > (f hndhalla < I| £

1eT IeT

So the square operator is bounded on L*(R).

11



Proposition 4. The square operator is of weak-type (1,1) and of strong-type (p,p) for all
p €]1,00[.
Remark : This is this result we will focus on and prove in the last part using an other

method that the usual one based on the Calderon-Zygmund decomposition (see [MS213]).

We will need the linearization of the square operator (which is clearly not linear). For that,
we need the following inequalities :

Proposition 5 (Kintchine’s inequalities). Let p € [1,00[. Let m € N*.
Then there exists (A,, B,) € (R*)? such that for all (ay)nepm) € R™.

m 3 . m » m 3
Ap <Z ‘an‘2> < </O | Z anrn(t”pdt) < B, (Z |an|2> :
n=1 n=1

n=1

where ¥n € [1,m], vt € [0,1],r,(t) = sgn(sin(2"nt)) € {—1,0,1}.
The r,, are called the )

1 1

m 2 1 m D
Remark : The result can be written (Z |an|2> R~ (/ | Z |anrn(t)|pdt> .
0 n=1

n=1
Proof :

e Let (i,7) € N? such that i # j.

sin(2'nt) sin (27t ) dt

/1 cos((2° — 2)mt)dt — % /1 cos((2" + 27)rt)dt
Fin((? - 2j)m)] | [siﬁ((? + 2j)7rt)] !

(20 — 20 x 2| @+ 2)r

s~

/0 1 ri(t)r;(t)dt =

2

SN~ -

Thanks to this orthogonal property, we have A =1 = Bs.
Moreover, thanks to the monotonicity of the LP-norms, we have :

V(r,p) € 1,00, <p= (A, < 4, and B, < B,).
So we just have to prove that A; > 0 and Vk € N, By, < +00.

e We focus on By,.

We set
2%k

fop /01|ni::lanrn(t)|2kdt:/ol (ganrn(t)> dt.

We have :

2k)! !
E = > 7<' (l aft.agn / Y (t)..ror (t)dt
ceee 0

multinomial —
|a|=2k




1 -
a am o ifFel,m], =12
We have used the fact that / rit(t)..rpm(t)dt = { 1 fvie[Lm]ai=0 ° But

0
for all @ € N™ such that |a| = &, we have :

2oyl = (2% !)... (2 i !) < (2a0)!... (200!,

Hence,
k
(2k)! AT R ¢ I e S
Thus,
L 1
= (2k)! S 2 ’
B < (2]%! Z| ol
n=1
So )
2k 2+
BQk_(ékk?!) = e

e Now we focus on A;.

We set f(t) Z ATy (t

- |
(o) ([sor)
( :
(

<
0 n=1
! 54
= i |f@)|dt ) BEIfl5
Thus,
1 5 s
([ 1) =7 ([ 1ror)
0 0
Hence

/01|ianrn(t)|dt= /01 |f(t)|dt > B (/01 |f(t)|2)% _ g <Zm:an2>%.

0< B> <A

So

Definition 12. We define the linearization of the operator Sz as the
given by

Vf e L, (R),Vr € R, Tz f(x,t) Zrl (f,hiYhi(x), for somet € [0,1].

Iel

We write Tr := Tz(.,t) for some fized t € [0, 1].

13



1 :
Remark : We have ||Szf||, = (/ / |TIf(:c,t)\pda:dt) .
0o Jr

Proposition 6. The multiplier operator It is self-adjoint, i.e. T = T7.
Proof :
Let t € [0,1]. Let (f,g) € S(R)?.
Tfo) = [ Tef@olos

= /Rzr, (f, hi)hy(x)g(x)da

IeT

_ /R S () ( /R f(u)h;(u)du) ha(2)g(x)de

Iel

. /R > rr(t) f(u)hy(u) ( /R hf(x)g(x)dx> du

IeT

= [ ) f@hs(u) b, g)
R rer

= (f,Tzg)

By uniqueness of the adjoint, we can conclude 77 = T7.

14



2 An alternative proof for the boundedness of the square
operator

This second part is the one my mentors wanted me to reach. In her thesis [CB15], Cristina
Benea gave an alternative proof of the L? boundedness of the square function for p €1, oo[. My
goal was to prove the boundedness of this operator, using the same methods, in the following
cases :

o L'(R) — L'>(R),
o H'(R) — L'(R),
o L*(R) — BMO(R).

Let’s recall that, for a given finite collection Z of dyadic intervals, the square function is defined

by

Szf(x (thmm >|> :

1€z
And

1 1
Vo € RV € T, [hy(2)]* = m(ln(w) — 1, (2))* = mlz(x)-

Sef(e <Z|fhf||hf )é <ZW” )

IeT 1€l

Hence

2.1 The main cases
2.1.1 Cristina’s proof: the case [» — L for p €]1, 00|

We give here the proof she wrote in [CB15], but with more details and explanations.
Let Z be any collection of dyadic intervals.

We consider the square operator Sz associated with Z.

The idea of the proof :

e We want to estimate ||.Szf||, so we dualize the LP norm : ||Szf||, = sup / Szf(x)g(z)dx
gl <t /R

(as S(R) is dense in L” (R), we just have to consider g € S(R)).

e We apply the lemma 2 by localizing the operator on "good” dyadic intervals I, on which
we have the control on the averages of g and the L? norm of f in order to bound the

quantities / Sp, f(x)g(z)dx, where §;0 is the localized operator on Ij.
R

Let Iy € D. Let J be the collection of the dyadic intervals of Z which are contained in I :
VIieJ, I el and I C I.
We set 37(Iy) ={I' e D/3l € 3,1 C I' C Ip}. and

Vg € S(R), sizer(g) = sup{ﬁ / Lo () lg()ldy/T' € 3 (1))

15



A\Let’s recall that 31" is defined as the dyadic interval with the same center than I’ but three
times larger than [I'.
We begin with a lemma which focuses on localised square function

Sif( <j£:\ fohn) Plh ()] ) :

1ed

Lemma 2.

11512
|Io|2

v/ € L (R),Yg € S(R),| / S f(@)g(x)dz] S sizer(g) 1],

Proof :
Let g € S(R). Let f € Lloc(R)
We set J={J € D/VI € 3,1 & 3J and J is maximal with this property}.
We have the existence of J because we consider a finite collection of dyadic intervals.

e We can easily see that they form a partition of R (thanks to the maximality condition
associated to dyadic properties (propositon 1)). You can think about them as obtained
by ”Whitney” decompositions (see [GRAF108]).

So

/SIO dx—Z/SIO dx—Z/ (Z‘ f, ) 15( )) g(z)dz.

JeJ JeJ 1€l

Let J € 3. IfVI € 3,J N1 = (), then thanks to the characteristic function appearing in
the above expression, we don’t count the term associated to this J in the summation.
Otherwise, for all I € J such that I N.J # (), thanks to properties of dyadic intervals we
have J C [ or I C J. The last possibility is impossible by definition of J. So J & I and
thus |[J| < |I].

Hence, thanks to the triangle inequality, we get :

NI

[ Sl = 1% [ WP | sl @)

Jej IeJ|I|>\J|
%
|{(f, h
<>/ Py | oo )
JEF Iea, |I|>\J|

e Now we focus on each integral.
Let J € 3.
* As J is maximal with the property of no-inclusion, then J isn’t. So there exists I, € J
such that I; C 3.J. So 1; C J or I; C J (or a translate of one unit). Hence, there exists
I' € D such that I' € 3+ (ly), J C 3I' and |J| < |[I'| < 4]J].
« Let I € J such that [I| > |J|. If I N J =0, then, thanks to the characteristic function,
we don’t count the term associated to this I in the summation. Otherwise, we have J & I

and then
hr)|? : hr)|? :
Vo € J, Z M 1i(z) | = Z I ha)l? := C(J) constant.
1€3,)11>1J| 1] ~ 1€3,)11>1J| 7]

16



Moreover,

13
Hence,
) =3|I'|<12|J]|
FADN 37
[T @) i = [ —5E— L) cls@la )
7 \sea 1 . Clgrr(@)
1
< 12100 g [ L @lae)lds (10
B Js )
<sizery (9)
< sz’ze10<g>|J\c<J> ()
(*) Ied
=Sz f(x)

e Thanks to (8), (12) and the Cauchy-Schwarz inequality, we have (summing over .J) :

1
|/SIO x)dx| S sizer, (9)||Szflle VIJ| < sizer(g )Hf 1oz
——

cfprop3 | 0‘ 2

<4/ ol

1ol

Theorem 3. For all p € [2,00[, St is of strong-type (p,p).

Proof :
Let p €]1,00]. Let p’ €]1, 00| such that 1—1) +I% =1
It suffices to show thanks to restricted type interpolation (see [GRAF108]) that

Vi € L1 (R),Yg € SR),Y(F.G) € B(R)?, (|f| < 1 and |g] < 1¢) = | / S:f(x)9(x)dz] < |FIF|GI7.

The previous lemma shows us that, to prove the boundedness of the operator Sz, it suffices to
control the bound on g (through size;,(g)) and the one on f (through ||f1,|l2)-
We use for that a stopping-time argument.

e First, we focus on f.
x At step k , we set

A eZ, ICyVie|l,k—1],1y € Z,,
y G'D/ 27T 1< ‘I|fR1F 1[0< )d.ﬁl]<2_nk
k 0 VI'C Iy, (T €Z,1 CI') = i Jg Lr(a)lp(2)de < 27™
Iy maximal with this property

7,

The reader can take n;, = k € N even if it means that Z,, = 0. Actually, we choose
nky1 = min{n € N\ [0, ni]/Z, # 0}.

The purpose is to get intervals which control the boundedness in f and taken with maximal
and optimal conditions. Thus, we build a strictly increasing sequence (ny)reny € N and
the associated sequence (Z,, )ren until we exhaust all the intervals in Z (which one is
countable so the stopping-time argument can be used).

17



*x Let k € N. Let Iy € Z,,, .

We have 1 I
2t < [ @@ o B e [ 1pe
|]0| R 2 Io

Summing over all I in Z,,, , as they are pairewise disjoint thanks to their maximal condi-
tion, we have :

~ Z ol <2 Y /1F da;—Q"k/1F( )dx = 27| F|.

IOEInk 10€Tn,

Thus,

Y ol S 2 |F|] (%)

IOEInk

e Now we focus on g.
* At step [, we want to control size(g) for intervals in the collection Z.
We choose M; € 7 such that M, is maximal with the property

]. 1 .
—|3Ml|413M1<x)\g(x)\dx=§2§W41gl<x)|g<x)|dx<2 3

(The sup is a max because we consider a finite collection Z, so such an interval exists).
We set
M, C I}, Vi e 1,i— 1]] I, ¢ T,
L =31l eD/ 2™ < |31’| Jr Lsgg (@ |g( Jldz <27
I}, maximal with this property

One more time, the reader can take m; = (.

The purpose is to get intervals which control the boundedness in g and taken with maximal
and optimal conditions. Thus, we build a strictly increasing sequence (m;);eny € NY and
the associated sequence (Iml )ien until we exhaust all the intervals in Z.

« For all | € N, the [ € Z,,, are pairewise disjoint thanks to their maximal condition.
Because of the sup, we can’t conclude directly to an equality of the form (x).

We need that the Hardy-Littlewood maximal operator is of weak-type (1,1) :

VIEN, Y || | ] &l (13)

I\ €Tm, €T,

< Hz e R/Mg(x) > 27"} (14)
< [z € R/Mlg(z) > 2™} (15)
S 2™1elh (16)
= 2m|q]. (17)

Thus

> LIS 2mG)| (%)

I{)EIml

e We need to dualize the [* norm (knowing that (I%)* = [?) :

(Z| I h[ ) Zgl Y{(f, hrYh(x) with (ZEI ) =1 for a.e. z € R.

IeT I1eT IeT

=

18



Then, localizing we have :

[ set@a@is = [ Y crto)if bl (18)

IeT

= > Y /Rze[ (f,hi)hy(x)g(2)dz.  (19)

k l €N2 IOEInkaml 1€Z,ICly

Then, the lemma 2 and the definitions of Z,,, and Z,,, give :

| / Sef@e@idr < S S (Gntals S ey

(k; l N2 IOEInk mIml (k; l N2 IOEInk mIml

AThe % in the power of 2 comes from the L? norm of the characteristic function of F'
appearing in lemma 2 whereas we considered only the L! norm in the beginning of this

proof. The L? and L' norm of a characteristic function being very close, we only get this
1

Taking a geometric average of (x) and (x) we have for all (61,6;) € (R%)? such that
91 —+ 92 =1:

| / Sef@g(nds S S 2 e mn F)n@m(G)t = 3 2-megmii-) ppo gl
® (k,1)EN? (k,1)EN?

To reach our goal, we take #; = % and 6, =

A\To still have a convergent serie, we must have 35— 5 > 0 which implies p > 2.
The case p = 2 has already been proved in the first part of this internship report.

Now we prove the LP boundedness for p €]1, 0o[ looking at the linearization of Sz, we denoted
by T (recall that t is fixed in [0, 1]).

Vf € Ljpe(R), Y € R, Trf(x) = Y ri(t)(f, hu)hy().
ez
Theorem 4. For all p €|1, 00|, T7 is of strong-type (p,p).

Proof :
We take the proof of the lemma 2. It’s identical until the use of the Cauchy-Schwarz inequality.
We just have to prove the L? boundedness of T7.
Let f € L} .(R).

We have, writing ﬁ; the localized operator,

ITio f1l2 = OO b)Y e (O b hr) (20)

Ied I'ed
= ST P (21)
Ied
= (£ (f, ha)h) (22)
Ied
< 2 sh)hr||o 23
Concly Schwars 1£] |I;<f Vh| (23)
= 1£1l2 <Z (f, hf>|2) (24)
Ied
< 1713 (25)
Bessel
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Then the proof of the lemma 2 is done for T7. The boundedness for p > 2 is identical.
Finally, as T7 is self-adjoint (proposition 6), we can conculde by duality (Vp €]1, o[, (LP(R))* =
LP(R)) that T is of strong type (p, p) for all p €]1, oo[.

2.1.2 Case L' — [b>®

Now we want to get the previous result also for p = 1. The theory gives that actually Sz (or
Trz) is of weak-type (1,1). Our job is to prove this result using the previous method (and not
the ”classical” one based on the Calderon-Zygmund decomposition).

We have to see where are the problems in the previous proofs in order to defuse it.

e The previous proofs give that the operator is of strong-type, but we want it to be of
weak-type.
To prove the boundedness in I” we used the dualization of the L” norm. Here we need
the dualization of the weak-L!' semi-norm if we want to use the same method.

e In the last formular of the theorem 3, we can’t take #; = 0 (i.e. p' = o0, i.e. p = 1).
Otherwise we would get a non-summable serie.

As noted in the first remark above, we need to dualise the semi-norm ||.||; «. This result is
given by the following lemma (see [GRAF108]) :

Lemma 3 (Dualization of the semi-norm ||.||1,00)-

[fllzvo® =~  sup inf | [ flx)dx)|.

ECR,0<|E|<co E'CE,|E'|>3E| JEr

Now, we see that we have to estimate the quantities / Trf(x)lp(z)de = (Trf, 1p).
R

Theorem 5. 77 is of weak-type (1,1).
Proof :
e Using the self-adjointness of the operator 77 and the lemma 2, we have

1152

VF € SR)VE C R, [(Tof. 1) = |(f, Trlp)| < sizen (/). el
0 2

The idea is to exchange the roles of f and g = 1/, thanks to duality, in order to get back
the case p = 1 as we did in proposition 7 to get the case p €]1,2].

e Let f € S(R). Thanks to the linearity of Tr, we can suppose || f||; = 1.
Let E C R such that 0 < |E| < co. We can assume |E| = 1.
We set
Q={zreR/Mf(x) >C} and E' = E\Q.
C will be chosen correctly (high enough) such that |E'| > 1| E|.
For all d € N, we set Z, = {I € D/1 + %L  ody

1]
Now we perform the stopping time argument as in the original proof at each fixed d € N.

Let d € N.
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x We focus on f :
At step k, we choose M}, € 7 such that M; is maximal with the property

mélwk(xﬂf(x)ldx = Szlégﬁ/[@l”(x”f(x”dx <o

where we choose the largest possible value of 27",
(The sup is a max because we consider a finite collection Z, so such an interval exists).
We set
M, C Ij,Vie [1,k—1],I) ¢ T¢.
Il =1, € DNIy/ 27 < g fo Loy (@) f (@) da < 277
I}, maximal with this property

Thus, we build a strictly increasing sequence (ny)ren € ZY and the associated sequence
(an Jken until we exhaust all the intervals in Z.

Thanks to the fact that the Hardy-Littlewood maximal operator is of weak-type (1,1),
we have :

VEeN, Y |l = | || & (26)
1Ty, 1Ty,

< [z e R/Mf(x) > 27"} (27)

S O2"| flh (28)

= oM, (29)

Thus,

pRIAREA

1Ty,

Moreover, let Ij, € Z¢ . By definition of I, we have that
2710 N Q° £ 0.

(Actually, Z,,, needn’t be in Z; in order that the previous formula holds (and that solves
a possible problem of existence)).
So there exists zy € 27I) N Q°. We have :

M f(zo) < C and so

f(z)|dx < C.
203 oy, T

We choosed [ such that :

1
(@) da ~ 27
3L Sy
But, as 31} C 21}, (for d > 2), we have :
o< L p@ldr < o [ f@)de 2 [ | f(@)lde < 20 < 21
1310] Jar 1316] Jaary |2410] Jaary

If d =0 (resp. d =1), we have I C 41 (resp. 21 C 41).

As I € Iy (vesp. I € Z;), we have I N Q¢ = () (vesp. 21 NQ° £ ().
So 41 N Q¢ # () and we have the same result.

Hence we have :

2 < 9d
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Remark : This last expression also states that we will still have a convergent serie, because,
even if this time ny € Z, it can’t be "too much” negative and thus we can sum.

* Now we focus on 1p :

At step [, we set

HIEIICIO,ViE[[ll 1]],]0€'Ig”

21 < f ]-E’ 1[ ( )d!L‘ L 27

d _ |1 | Jr 0

Zml IO € szd/ v[/ C [0’ (3[ c I IC [/ ‘[/‘ fR 1E/ 1[/( )dﬂf < 92—y
Iy maximal with this property

Thus, we build a strictly increasing sequence (m;);eny € NV and the associated sequence
(Iml)leN until we exhaust all the intervals in Z
We still have

Y Z ‘[0 2ml Z /1E/ dx<2ml/1E/< ) l'_2ml‘E/|<2ml

10 €zd, Io€Ty, To

Thus,

> | < 2m

IoEIgnl

We know that supp(lg) = E C Q°. Let | € N.
If Ij € Z¢, , then I{ N E # (0. So 15 N Q° # 0. So dist(I), Q) = 0. So 1 ~ 2% So d = 0.

Hence

9—m < 27Md

for an arbitrary M > 2.

e Thus, we have :

(Tzf, 1e)| < Z YooY WTnfiie) (30)

d=0 (k,l)eN2 IoeId mId

. 1ey,

SY Y Y sty 31
d=0 (k,)EN? IoeTd NTd, | Tol2

Sy Y et Y (32)
d=0 (k,l)eN2 Ioezd mIglnl

< Z > 2 o395 o5 (33)
d= O(kleN2

- Y &
d=0 (k,l)EN2

< Y 2s W (35)

0

= (fj %2M>||f|

=1

1 (36)
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Remark : Only the term corrsponding to d = 0 is present, but we chosed to let the serie
appearing because in the case of general wevelets (different from the Haar system) this is
the point.

Hence,

Vf € L'R) Tz fllrrem) S 11l
ie. Tr: L'(R) — LY°(R) is bounded.

2.2 Cases H' — L! and L* — BMO
2.2.1 Case H' — L'
Theorem 6. 77 : H'(R) — L'(R) is bounded.

Proof :
Let f € Hl(]R).

There exists A = (\;)ieny € I1(N, C) and (a;)sen a sequence of atoms such that f = Z \i@;.

i=0
Assume for now that we have :

Trf = Z NiTra; (%)
i=0

So by the triangle inequality we have :
ITzf Nl < 1Nl Tras])s-
=0

So we have to estimate the quantities ||77a;]|;.
Let ¢ € N. We set g(l’) = 1Tzai>0('r) - 1Tza¢<0('r)'

[Tzailh = [ [Trasa)lde = (Tras,0) = S0 ro(e)(f. ) ()
IeT

Let @; be as in the definition of the Hardy space :

e supp(a;) C Q; (1)
o o < A 2
. / ai(z)dz = 0 (3)

i

We look at (a;, hr) 5 / a;(x)h(x)dz.
Q.

x If INQ; =0, then (ai,lhﬁ = 0. So we can not count those intervals in the summation.
* Otherwise, we have @; & I or I C @; (dyadic properties).

If Q; & I, then Q; C I, or Q; C I, (dyadic properties).

We can suppose by symmetry that Q); C I;.

Then :

al7 h’[

1
/ \/|T \/m Qiai(az) a:(gz)()
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So we don’t count those intervals in the summation.
Thus we only have to consider the localized operator Ty, on the interval @);.
[Tz as]|1 = 1Tq;aillx
= <TQz’aza ng >

a;1
< sizeqlg) ka2,
lemma 2 ~——" |Qi|2

<2
AP
S o] - Q]
Qil2
< 1
(2

Finally,
1T fll Il = M grgy-
=0

Taking the infimum, we get
1Tz flly S 1 e

But we stil have to prove (*).
Let o > 0. Let n € N.
As Ty : LY(R) — LY°(R) is bounded, we have :

{x e R/|T7rf(z Z)‘TIGZ )| > a}

< {z e R/|Tof(x Z)\Tzaz )| > }|+|{xER/| ZATM
i=n+1

2

S r 7 PR Zmuw—u S ATzal,
= n+1

2
< S Tlhsaellf - me— S Il [Tra

« i H</1—/
< - ZAaZHw Z [Ail

i=n+1

But as f = Z \ia; in HY(R), (Z )\iai> converges to f in L'(R).
1=0 neN

1=0

Moreover, as A € [}(N, C), < Z |)\Z|> converges to 0.
i=n+1 neN
Thus,
Vo > 0, {z € R/|T¢ f(x Z)\ Tra;(z)] > o} = 0.
Hence

Tl'f = i )\iai a.e.
1=0

24
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2.2.2 Case L>* — BMO
Theorem 7. 77 : L°(R) — BMO(R) is bounded.

Proof :
As

o (H'(R)' = BMO(R),

o (I'(R)) = [~(R),

o 7 =17,

o Tr: H'(R) — L*(R) is bounded,

we have : T7 : L*°(R) — BMO(R) is bounded.

Final remark : In the case L? for p €]1, 00|, it wasn’t rectrive to work with a finite collection Z
of dyadic intervals.

Indeed, as D = {[k2", (k + 1)2"[/(k,n) € Z*}, an infinite collection of dyadic intervals is a
countable set. Let Z,, be an infinite collection dyadic intervals :

Ioo = {[jv.j € N}

Let f € LP(R).

For all j € N, we set Z; := {I/k € [0, j]} and f; := Sz,(f) € LP(R).

VjeN, f; > 0 and (f;)jen is an increasing sequence which converges a.e. to fo := Sz (f).
Moreover, Vj € N, || f;]|, < C| f|l, with C independant of j and f.

Hence, by the monotone convergence theorem, ||fll, < M| f||, and Sz : LP(R) — LP(R) is
bounded.

25



3 The 7(1) theorem

3.1 Singular integral operators
3.1.1 Calderon-Zygmund operators

Definition 13. Let « €]0, 1]. We call a continuous func-
tion K : A° — C such that there exist C' > 0 such that :

o V(z,y) €A |K(2,y)| < o5

|o—y[

o V(r,y,y) € (R, Q2y—y/| < lz—y| and x # y) = |K(2,y)-K(z,y)| < O 2.
o V(z,7',y) € (R")?, 2e—a'| < |z—y| and & # y) = |K (z,y)-K (', y)| < (5=
We write K € CZK,.
Remark : These are technical conditions of smoothness and such a kernel present a singu-
larity on {x = y}.
Definition 14. Let « €]0,1]. Let K € CZK,,. Let T € L(L*(R")) such that
Ve SR"), Tf(x) = . K(x,y)f(y)dy for a.e. x € R".

We say that T s a , and we
write T' € CZ0,,.

3.1.2 Singular integral operators

Definition 15. Let T : S(R™) — S'(R") be an operator. We say that T is a
if its K defined by

K € S(R*™) and, (K,g® f) =(Tf,g)
when restricted to A° belongs to CZK,.
We write T € SIO.

3.2 Two useful lemmas

3.2.1 Cotlar’s lemma

Lemma 4 (Cotlar’s lemma). Let H be a Hilbert space. Let N € N. Let (T})1<icn € L(H)Y
Let v € IN(Z,R,).
We assume that

V(. k) € [, N ITETell < 4G — B)? and |TT3] < A0 — k).
Then

| ZT | < IVlln@ry)-
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Proof :

N
We set T' = ZT’ € L(H).
i=1

Since T*T is self-adjoint, one has ||(T*T)™| = || T*T||™ = ||T'||*™.

But (T = S [T

1<, Uy J1seees Jm<N k=1

By ordering the terms, we obtain both :

ITT 70 < TGk — )
k=1 k=1
and )
| HT*T <NTu T3 TT G = k)
k=1

Taking the geometric average, we have :

m m

HHT*T IT: T D2 TT G = i) [T G = k)
k=1 =1
Then
171> < Nsup{[|Ti[| /1 < i < N}z, )
So

171 < (N sup{| TlI/1 < i < N} 27|l ey

Finaly, when m tends to +o0,
1T < IVl @)

3.2.2 Schur’s lemma

Lemma 5 (Schur’s lemma). Let X and Y be spaces. We consider a positive mesure ;1 & v on
X xY. Let K: X xY — R be a mesurable function. We define

/K z,y) f(y)v(dy).
Then
o [Tl < sup{ [y 1K (2, ) pda) fy € Y} = A.
o Tllesoe < spLfy [K (2, )l0(dy) /2 € X} = B
o [|T]psp < AvB¥ , Vp € [1, 00] with p’ such that 14 +5 =1

o [Tlhmoo < ML (xxv)-

Proof :

o Let f e LY(Y,v).
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ITflloxw = /X\Tf(x)|d:c

< /X K (2, )| £ ()l (dy)u(d)
=/ /X ) () 1 )l )
<A
< Ao,
So
IT]ho < A

o Let fe L>™(Y,v).

Ve e X Ti) < /Y K@y |f)] v(dy)
< fllzoe (v

< Bl fllev)-

So
T f | oo x ) < Bl f |l v)-

So
1T |00 < B.

e x For p=1 or p = 0o we already did it.
« Let p €]1, o0.
By Riesz-Thorin interpolation (Theorem 2), we have :

IT sy < A¥ B

o Let f e LYY, v).

Ve X.|TH)| < /Y K(z, )| 1£@)v(dy)

<K oo (x xv)

< Koo [ f 2t v -

So
1 T'|[1500 < || K| oo (xxv)-

3.3 The T(1) theorem
3.3.1 The wording

Theorem 8. Let T' be a singular integral operator such that T, T* : S(R) — S'(R) N L},
Then, the following are equivalent :
T(1p,) € BMO([0,1])
(1)§ T(1py) € BMO([0, 1)),
VI € DY, max(||T(hp)||2, | T*(h1)2) < ||hz]]2 = 1.
(2) T is bounded on L*(]0,1]).

(R).

Remark : Once proved this theorem, we can note that we can extend it to any dyadic
interval. Hence, R can replace [0, 1] in the theorem.
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3.3.2 The proof
*(2) = (1)

Theorem 9. Let T be a singular integral operator which is bounded on L*([0,1]).
Then T maps L>*(R) into BMO(R).
Hence T'(1j01)) € BMO([0,1]) and T*(1j,1) € BMO(]0, 1}).

Proof :
Thanks to BMO — H' duality, it suffices to show that there exists C' > 0 such that for all atom
a, | Tally +[[T"all, < C.
Let a be an atom such that supp(a) C 1.
First,

1 1
ITallrsry < [3I]7[|Tallz < CBIEall: < V3C.
Holder 7 bounded on r2 atom

Moreover, with y; the center of I, we have :

[ ma@ias < [ [k - Kooy
R\3I R\3I J I

1]
S dyd
/R\sj/dlst ;p‘]| 1+a (y)| yaxr
[oz
< C oo
lallx o Ao, I T
< Cllallo|1]2
< C

This proves that 7" maps H' ([0, 1]) into L'(]0, 1]).
So by duality 7" maps L*([0, 1]) into BMO([0,1]), and the theorem falls.

e (1) = (2)
We consider only the case T'(1p,1)) = 0 = T*(1j,1). Actually, the problem can be reduced to
this case using paraproducts. The reader can find the solution in [MS113].

We set for all n € N, A, = {[(k — 1)27™,k27"[/1 < k < 2"} ; D, = UAi (so D' = D) ;

Y, =0(Ay) ; E (f) =E[f|X,] for all f € L'([0,1]) and A, =E,; — EZ:.O

By properties of the conditional expectation, we have :

Vn € N,Vf € L'([0,1]), => g /f
IeA, | |
*
Proposition 7. Vn € N, Vf € L'([0,1]), A, (f) = Z (f,hr)hy
IeA,

Proof :

We prove it by induction, doing only the case n = 1 (because the idea is here) :
For all f € L'([0,1]),

Ey(f) = 101[2/%f(;1:)dx+1112/1f(:c)d:c
_ /f dﬁ(/f o= [ 1t dx) o= 1)

- <f h[o 1[
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* The hypothesis implies that TEq =Eq =0so Id =) " A,.
Because of the fact that E, = Z A,,, we have :

m<n
T = (i An> T <i Am> - i(AnTAn +E,TA, + A,TE,).
n=0 m=0 n=0
~ ~

o
Hence, thanks to the triangle inequality, we just have to estimate the quantities || Z ATA, 222,

n=0

1D EaTAl20 and || Y AZTE, |50

n=0 n=0
By symmetry, we just have to prove that the first two quantities are bounded. For that we will

use the two useful lemmas.

x We focus on the operator Z A TA,.

n=0
Thanks to the orthogonality properties of the Haar functions and the previous proposition, we
have :
V(n,m) € N n#m = (ATA)(ALTA,) =0=(A,TA,)(ALTA,,).

As a consequence, we have :
[es)
|| Z AnTAnHQ—)Q < sup ||AnTAn||2—>2
n—=0 neN

Thus, we have to estimate ||A,TA,|2-2-
An immediate consequence of definition 13 (as T' € SIO) is :

1]t
(T+ dist(y, D))+

VI € D', vy € [0, 1\31, |Thi(y)| + [T"hi(y)] <

Forn € N, let A" = (A} ;)(1,7)e(4,)> be the matrix of the operator A, T'A,, in the basis (hr)sca, -
We have :
Y(I,J) € (A,)* Ay = (h;,Thy).

For all (I,J) € (A,)?% we set kr; = min{k € N/% < k} (it exists thanks to the funda-

mental property of N).
Thanks to and the third hypothesis of the theorem, we have :

1 iftlI=J
<
|Ar s S { (14 kr.y)~® otherwise

Hence, Schur’s lemma will give that
Vn € N [|A,TA,ll2—2 < C where C does not depend on n.

Thus ~
1) S ATA 22 S 1.
n=0
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x Now we focus on the operator Z E,TA,.
n=0
Let n € N. Let B = (Br,1)(1,7)e(4,)2 be the matrix of the operator E, TA,,.

Then, for all (I, J) € (A,)?, we have :

1
|Brsl = [(Thr,—=1,)|

|J1|2 X

< |[(Thy, Elsmﬂ + [(Thy, Eb\slﬂ

e
S 1 (Z)+/ 1
e na1 |J|2dist(x, )1+
i

S lsingze + Wlslmzm-

Schur’s lemma gives us :

sup | E,TA, |22 S 1.
neN

The difference with what preceeds is that, for all (n,m) € N? such that n # m, we have
(E,.TA)(E,TA,,)" =0

BUT
(E,TA,)*(E, TA,,) # 0.

So, if we want to apply Cotlar’s lemma, we have to estimate the last quantity.
Let (n,m) € N? such that n # m.
We set

Snm = (EnTAL) (EnTAR) = (AT) (Eingfn,my T Am).

By symmetry, we can suppose that m < n. Hence
S = (AT*) (BT Ay).
Let M = (Mj 5)(1,7)eA,xA,, be the matix of the operator S, .

V(I, J) I~ An X Am; M[,J = <EnTh,],EmTh,J>
For I € A,,, we set

wi(z) =C <|1| n d|io,|t(x, I))Ha

where C' is the constant appearing in
Then, for all (I,J) € A, x A,,, we have

1
|EnTh[| < — Wy and |EmThJ| <

ME P

Wwy.

Thus, thanks to the triangle inequality, we have :

1

V(I,J) e A, x Ay, | M 4| < ﬁ/@](x)wlj(l‘)dl‘.
(H][7])2 Jr

A simple calculus gives us :

Y(I,J) e A, x A wi(z)wy(z)dr S min{|/| |J\}( ] )Ha
: n X A, | Wizl S ; ||+ [J] + dist(I,J) '
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So we have :

o J 1+a
V(I,J) € Ay X Ay, [Mp 4| S22 (\JI —l—cLis‘t([ J)) '
We set
Apgm = sup Y [ My S 277

I€An je 4.,

The problem is that we can’t sum over I. To be able to follow, we have to precise.
We set
Apm ={1 € A, /NI € A, dist(I,0) < A|I|} and B, = An\ A

The constant A has to be chosen with care.
We set

B}hm: sup Z |M[7J|§2m2_n)\.

JeAm I€An m

Now we have to estimate the sommation over B, ,,.
We have :

1 1
/ EnTh[<SL’)dSL’ = / Th[(ﬂ?)dﬂ? = <1[071},Th[> = <T*1[0,1], h[) =0.
0 0 SN——

=0

Let I € A,. Let I, € A, be the unique ancestor of I (it exists because m < n).
For all j € A,,, we set :

1 1
(Thy)(1,) = — | E,Thy(z)de = — | Thy(z)dx.
|[a| I ‘[a‘ I,
Then, for all (1,.J) € B, m X A, we have :
IM; 5| = | | (EThi(x)(Thy)(I,)dx +/ (E, Thi(x))(E,Th;(z))dx|
Ia Ie

= 1= [ ETh) T e+ [ (B Thi() (B Tho o))

c
a

<C/—deﬂt— —WfUdSCﬂL/iw T)wy(x)dx
s TRV, O [ e

- ﬂ% |J| 1+ai
~ ) \imTvaist@, ) e

Thus we can set

n—m ].
2
Bn,m Sup Z |MI7J| 52 2 F'
JE€Am e

Hence

1
Amm(BrlL,m + Bz,m) S 2T + F'

For a good A\, we have finally :

(n—m)a

An,m(Brlz,m + Bz,m) 5 2 o,

We just have to apply Cotlar’s lemma to end the proof of this theorem.
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