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Introduction

First, I would like to thank my mentors who endured me and my ignorance. I learnt many
things with them.

Un petit mot en français pour remercier ma famille et mes amis (de l’ENS et d’ailleurs) :
c’est grâce à leur soutien que j’ai réussi à devenir normalien cette année.

The purpose of my internship was to become familiar with the dyadic analysis, especially
dyadic harmonic analysis. I learnt a lot of things in modern Fourier analysis which theory has
only fifty years of existence. Among the most famous people who developped this theory we
can quote Calderon, Zygmund, Littlewood, Paley, Meyer, Tao and so on...

The first part of this internship report is here to set all the definitions and small results we
will need in the last two parts.

In the second part, we give the proof of the boundedness of the square operator in different
cases, looking at its linearization. This is in this part that I had to make, thanks to advises
from my mentors, my own proofs of certain results already known, using their new methods.

In the third and last part, we present a dyadic proof of the T (1)-theorem which gives a
necessary and sufficiant condition for the L2-boundedness of singular integral operators. The
proof is based on Haar functions.

Notations
We write :
a.e. to say ”almost every(where)”.
iff. to say ”if and only if”.
n ∈ N∗ fixed.
(X, µ) a measure space (the measure is always supposed σ-finite).
B(Rn) the Borel algebra on Rn.
Lp the Lebesgue space of order p ∈ [1,∞].
p′ the conjugate exponent of p: 1

p
+ 1

p′
= 1.

L1
loc(R) the set of all locally integrable measurable functions on R.

S(Rn) the Schwartz space.
lp the space of sommable sequences at order p ∈ [1,∞].
E[.|.] the operator of conditional expectation.
∆ = {(x, x)/x ∈ Rn} the diagonal of Rn.
Q the set of cubes in Rn (i.e. balls for the uniform metric).
A . B to say ∃C ∈ R, A 6 CB.
A ≈ B to say ∃C ∈ R, C−1B 6 A 6 CB.
λI the interval with the same center than the interval I but λ larger (for λ ∈ N).
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1 Necessary definitions and results to begin

1.1 Dyadic analysis on the line

1.1.1 Dyadic intervals

Definition 1. We call dyadic interval an interval of the form Ik,n = [k2n, (k + 1)2n[, where
(k, n) ∈ Z. n (or sometimes 2n) is called the scale of the dyadic interval Ik,n.
We write D the set of all the dyadic intervals of R.
We write D1 the set of all the dyadic intervals contained in [0, 1].

We have the immediate properties :

Proposition 1.

• ∀n ∈ Z, ∀x ∈ R, ∃!Ik,n, x ∈ Ik,n.

• ∀I = [a, b[∈ D, Il := [a, a+b
2
[∈ D and Ir := [a+b

2
, b[∈ D.

• ∀(I, J) ∈ D2, if I ∩ J 6= ∅, then I ⊂ J or J ⊂ I.

Remark : Il is called the left-son of I and Ir is called the right-son of I. I is called the
parent of Il and Ir. We write Ĩl = I and Ĩr = I.
D1 can be represented as a binary tree, where the root is [0, 1], and the above vocabulary comes
from the informatical theory of trees.

1.1.2 Haar functions

Definition 2. For all I ∈ D, we set

hI =
1√
|I|

(1Il − 1Ir).

hI is called the Haar function on the dyadic interval I.

I

1√
|I|

− 1√
|I|

Remark : Haar functions are the more simple example of wavelets (revolutionary theory in
Fourier analysis developped by Meyer).

Definition 3. Let (E, ‖.‖) be a normed vector space on a field K. Let (en)n∈N ∈ EN.
We say that (en)n∈N is a Schauder basis in E if

∀x ∈ E, ∃!(xn) ∈ KN, lim
n→+∞

‖x−
n∑

k=0

xkek‖ = 0

and in this case, we write

x =

∞∑

n=0

xnen.
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Remarks :

• Thanks to the property of uniqueness, the family (en)n∈N is free.

• A Hilbert basis is a special case of Schauder basis in a Hibert space.

Lemma 1. For all p ∈ [1,∞[, (hI)I∈D1 is a Schauder basis in Lp([0, 1]), orthonormal in
L2([0, 1]).

Proof : We just prove that it is a Hilbert basis of L2([0, 1]), because it is only that fact we
will use in the following parts.

• Let (I, J) ∈ (D1)2.

∗ If I ∩ J = ∅, then obviously,

ˆ 1

0

hI(x)hJ(x)dx = 0.

∗ If I = J , then

ˆ 1

0

hI(x)hJ(x)dx =

ˆ 1

0

(hI(x))
2dx =

1

|I|

ˆ 1

0

1I(x)dx = 1.

∗ If I ∩ J 6= ∅ and I 6= J , then I  J or J  I, by properties of dyadic intervals. By
symmetry of the roles of I and J , let’s assume that I  J . Then I ⊂ Jl or I ⊂ Jr. Still
by symmetry and properties of dyadic intervals, let’s assume that I ⊂ Jl. Then

ˆ 1

0

hI(x)hJ (x)dx =
1

(|I||J |) 1
2

ˆ 1

0

1Il(x)− 1Ir(x)dx =
1

(|I||J |) 1
2

(
|I|
2

− |I|
2
) = 0.

• Let f ∈ V ect((hI)I∈D1)
⊥
. Then ∀I ∈ D1,

ˆ 1

0

f(x)hI(x)dx = 0.

∗ We consider F :
[0, 1] 7→ C

y →
ˆ y

0

f(x)dx
.

Let I ∈ D1. We can write

hI = hm = 2
n
2 (1[ k

2n
, k
2n

+ 1
2n+1 [

− 1[ k+1
2n

− 1
2n+1 ,

k+1
2n

[)

where (n, k) is such that m = 2n + k and k ∈ J0, 2n − 1K.
Then, the orthogonal hypothesis imposes

ˆ 2k+1
2n+1

2k
2n+1

2
n
2 f(x)dx−

ˆ 2k+2
2n+1

2k+1
2n+1

2
n
2 f(x)dx = 0

which gives

−F (
2k

2n+1
) + 2F (

2k + 1

2n+1
)− F (

2k + 2

2n+1
) = 0.

Thanks to a trivial induction we have that F (d) = 0 for all dyadic number in [0, 1].
∗ Moreover, thanks to the Cauchy-Schwarz inequality, we have

∀(x, y) ∈ [0, 1]2, |F (x)− F (y)| = |
ˆ 1

0

f(t)1[x,y](t)dt| 6 ‖f‖2
√

|x− y|.

Hence, F is continuous on [0, 1] and equal to 0 on the dense subset of [0, 1] formed by the
dyadic numbers. So F = 0 and then f = 0.

Thus, V ect((hI)I∈D1)
⊥
= {0}, and then (hI)I∈D1 is a Hilbert basis of L2([0, 1]).

Remark : In the previous proof, we can see that the Haar system (hI)I∈D still forms a Hilbert
basis of L2(R).
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1.2 Some important spaces

In this paragraph, we introduce spaces we will work with. We present them in a general
background, but we will only use them in R. The spaces presented here are often used in PDE
and in Fourier analysis.

1.2.1 Weak-Lp spaces

This is an extansion of Lp spaces. We use them to deduce, through the Marcinkiewicz interpo-
lation theorem (Theorem 1), the Lp boundedness of some operators.

Definition 4. Let p ∈ [1,∞[. Let (X, µ) be a mesure space. We call weak-Lp space on (X, µ)
the set of µ−mesurable functions such that

sup
λ>0

λpµ{x ∈ X/|f(x)| > λ} < ∞.

We write it Lp,∞(X, µ).
Then we define the following semi-norm on this space by

‖f‖p,∞ =

(
sup
λ>0

λpµ{x ∈ X/|f(x)| > λ}
) 1

p

.

We set L∞,∞(X, µ) = L∞(X, µ).

Remarks : Thanks to (Tchebychev-)Markov’s inequality :

∀λ > 0, λp|{x ∈ Rn/|f(x)| > λ}| 6 ‖f‖pp,

we have
Lp(X, µ) ⊂ Lp,∞(X, µ).

But we don’t have the equality. For example in R, we consider f :
R → R

x 7→ 1
x

. We know that

f 6∈ L1(R) (Riemann integral), but ∀λ > 0, |{x ∈ R/|f(x)| > λ}| = |]− 1
λ
, 1
λ
[\{0}| = 2

λ
.

So
sup
λ>0

λ|{x ∈ R/|f(x)| > λ}| = 2 < +∞.

So f ∈ L1,∞(R).

1.2.2 Hardy spaces

We do not define Hardy spaces as it is usual to do, but by an equivalant : the atomic decom-
position.
Moreover, we consider the dyadic form of this space (because we will need dyadic properties in
section two).
We write Qd the set of all dyadic cubes in Rn (i.e. cubes with dyadic sides).

Definition 5. Let p ∈ [1,∞]. Let Q ∈ Qd. Let a : Q → C be a mesurable function. We say
that a is a p-atom on Q if it satisfies :

• supp(a) ⊂ Q.

• ‖a‖p 6 1

|Q|
1−1

p
.
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•
ˆ

Q

a(x)dx = 0.

We denote the collection of p-atoms on Q by Ap
Q, and we set Ap =

⋃

Q∈Qd

Ap
Q.

Definition 6. Let p ∈]1,∞]. We define the p-Hardy space as

H1,p = {f ∈ L1(Rn)/∃(ai)i∈N ∈ (Ap)N, ∃(λi)i∈N ∈ l1(N,C), f =
∞∑

i=0

λiai)}.

We define the norm associated :

‖f‖H1,p = inf{‖λ‖l1(N,C)/f =
∞∑

i=0

λiai}.

Actually, (H1,p, ‖.‖H1,p) is a Banach space, and ∀p ∈]1,∞[, H1,p = H1,∞ ⊂ L1(Rn), thus we
can define the Hardy space as H1 = H1,p for p ∈]1,∞], associated with its norm (see [AUS12]).
The ideas of the proof :
The inclusion in L1 is immediate by definition.
We want to show that (H1,p, ‖.‖H1,p) = (H1,∞, ‖.‖H1,∞).

• The inclusion ⊇ is easy by Hölder inequality.

• We show ⊆ using a good Calderon-Zygmund decomposition : for every p-atom a, we write
a = b+ g with ‖b‖H1,p 6 1

2
and ‖g‖H1,∞ . 1. Then as every function in H1,p is a sum of

p-atoms, we can conclude with an iteration argument.

1.2.3 BMO spaces

Singular integral operators, we introduce in the next paragraph, don’t map L∞(Rn) into L∞(Rn)
(see Theorem 9). The good space to consider is the Bounded Mean Oscillation (BMO) space.
This is the space of functions which don’t grow too far away from their average on every cube
of Rn.

Definition 7. Let f ∈  L1
loc(R

n). The mean oscillation of f in a cube Q ∈ Qd is the number :

 

Q

|f(x)− fQ|dx =
1

|Q|

ˆ

Q

|f(x)− fQ|dx

where fQ = 1
|Q|

ˆ

Q

f(x)dx.

We set

f#(x) = sup{
 

Q

|f(y)− fQ|dy/x ∈ Q ∈ Qd}.

Then we say that f has bounded mean oscillation, and we write f ∈ BMO(Rn), iff f# ∈
L∞(Rn) and we take :

‖f‖BMO = ‖f#‖∞.

Remark : Clearly, ‖.‖BMO is a semi-norm and L∞(Rn) ⊂ BMO(Rn), with ‖f‖BMO 6

2‖f‖∞. But we don’t have the equality.
Counter example :
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Let f(x) = ln |x|. We will show that f ∈ BMO(R)\L∞(R).
Let t > 0. We set

ft(x) = ln |x
t
| = ln |x| − ln |t| = f(x) + c.

For I an interval of length t, and J an interval of unit length, we have by change of variables :

1

|I|

ˆ

I

|f(x)− 1

|I|

ˆ

I

f(y)dy|dx =
1

|I|

ˆ

I

|ft(x)−
1

|I|

ˆ

I

ft(y)dy|dx =
1

|J |

ˆ

J

|f(x)− 1

|J |

ˆ

J

f(y)dy|dx.

So we can consider only the case |I| = 1.
Let I = [x0 − 1

2
, x0 +

1
2
] where x0 ∈ R.

By symmetry, we can suppose that x0 > 0.
∗ If x0 ∈ [0, 3], then we set CI = 0 and we have :

1

|I|

ˆ

I

|f(x)|dx =

ˆ

I

|f(x)|dx 6

ˆ 7
2

− 1
2

| ln |x||dx < +∞.

∗ Otherwise, x0 > 3.

∀x ∈ I, | ln(x)− ln(x0 − 1
2
)| = ln(x)− ln(x0 − 1

2
)

=

ˆ x

x0−
1
2

1

t
dt

6

ˆ x

x0−
1
2

2

5

= 2
5

(
x− x0 +

1
2

)

6 2
5

(
x0 +

1
2
− x0 +

1
2

)

= 2
5

We set CI = ln(x0 − 1
2
), then

1

|I|

ˆ

I

| ln(x)− CI |dx =

ˆ

I

| ln(x)− CI |dx 6
2

5
.

In every case, we have :

1

|I|

ˆ

I

|f(x)− CI |dx 6 max

(
2

5
,

ˆ 7
2

− 1
2

| ln |x||dx
)

:= C.

But

f − 1

|I|

ˆ

I

f(y)dy = f − CI + CI −
1

|I|

ˆ

I

f(y)dy = f − CI +
1

|I|

ˆ

I

(CI − f(y))dy.

Hence

1

|I|

ˆ

I

|f(x)− 1

|I|

ˆ

I

f(y)dy|dx 6
1

|I|

ˆ

I

|f(x)−CI |dx+
1

|I|

ˆ

I

|CI−f(y)|dy = 2
1

|I|

ˆ

I

|f(x)−CI |dx 6 2C.

So f ∈ BMO(R) and it is obvious that f 6∈ L∞(R).
Thus

L∞(R)  BMO(R).
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An other important result is that we have (H1(Rn))∗ = BMO(Rn) (see [AUS12]).
The ideas of the proof :

• We show thatBMO = BMOp where BMOp = {f ∈ Lp
loc/ sup

Q∈Qd

1

|Q|

ˆ

Q

|f(x)− 1

|Q|

ˆ

Q

f(y)dy|dx}.
This is proved using John-Nirenberg’s inequality which states that the worst behaviour
for a BMO function is to blow up logarithmicaly.

• Then we build the isomorphism between (H1,2)∗ and BMO2. The difficulty is to show the
surjectivity. Actually, we build the application on atoms and we get the general case by
density using the Riesz representation theorem.

1.3 Main results

1.3.1 Interpolation

The idea of the interpolation is to get informations on ”intermediate” operators or spaces having
informations only on ”extremal” ones.

Definition 8. Let T be an operator on a vector space V of complex-valued measurable functions
on (X, µ) and taking values in the set of all complex-valued finite a.e. measurable functions on
(Y, ν).
We say that T is sublinear if

∀(f, g) ∈ V 2, ∀λ ∈ C, |T (f + g)| 6 |T (f)|+ |T (g)| and |T (λf)| = |λ||T (f)|.

Definition 9. Let T be a sublinear operator. Let (p, q) ∈ [1,∞]2. We say that

• T is of strong-type (p, q) if T : Lp → Lq is bounded, i.e.

∃C > 0, ∀f ∈ Lp, ‖Tf‖q 6 C‖f‖p.

• T is of weak-type (p, q) if T : Lp → Lq,∞ is bounded, i.e.

∃C > 0, ∀f ∈ Lp, ‖Tf‖q,∞ 6 C‖f‖p.

We give a simple version of the Marcinkiewicz interpolation theorem, the one we will need
later. This is the theorem of real interpolation.

Theorem 1 (Marcinkiewicz interpolation theorem). Let (p0, q0) ∈ [1,∞]2 such that p0 < q0.
Let T be a sublinear operateur defined on Lp0(X, µ) + Lq0(X, µ) which is of weak-type (p0, p0)
and weak-type (q0, q0).
Then T is of strong-type (p, p), for all p ∈]p0, q0[.

Proof :

• First let’s show that ∀p ∈]p0, q0[, Lp(X, µ) ⊂ Lp0(X, µ) + Lq0(X, µ) (to justify that the
assertion of the theorem makes sens).
Let p ∈]p0, q0[. Let f ∈ Lp(X, µ). Let α > 0.
We set f1,α = f1|f |>α and f2,α = f1|f |6α. Thus f = f1,α + f2,α.
Moreover,

ˆ

X

|f1,α(x)|p0dµ(x) =
ˆ

X

|f1,α(x)|p|f1,α(x)|
<0︷ ︸︸ ︷

p0 − pdµ(x) 6 αp0−p

ˆ

X

|f1,α(x)|pdµ(x) < +∞
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and

ˆ

X

|f2,α(x)|q0dµ(x) =
ˆ

X

|f2,α(x)|p|f2,α(x)|
>0︷ ︸︸ ︷

q0 − pdµ(x) 6 αq0−p

ˆ

X

|f2,α(x)|pdµ(x) < +∞.

So f1,α ∈ Lp0(X, µ) and f2,α ∈ Lq0(X, µ).
So

Lp(X, µ) ⊂ Lp0(X, µ) + Lq0(X, µ).

• Let f ∈ Lp(X, µ) fixed until the end of the proof.

We show that ‖Tf‖pp = p

ˆ +∞

0

αp−1µ{|Tf | > α}dα. Actually this an immediate conse-

quence of the theorem of Fubini-Tonelli (F-T) :

p

ˆ +∞

0

αp−1µ{|Tf | > α}dα =

ˆ +∞

0

pαp−1

ˆ

X

1|Tf |>α(x)dµ(x)dα

=

ˆ

X

ˆ +∞

0

pαp−11|Tf |>α(x)dαdµ(x)

=

ˆ

X

|Tf(x)|pdµ(x) = ‖Tf‖pp.

• We decompose f as before : f = f1,α + f2,α for a given α > 0.
We have :

µ{|Tf | > α} 6
T sublinear

µ{|Tf1,α| > α
2
}+ µ{|Tf2,α| > α

2
}

6
T weak-type

C
((

2
α
‖f1,α‖p0

)p0
+
(
2
α
‖f2,α‖q0

)q0)
.

where C = max(‖T‖p0→(p0,∞), ‖T‖q0→(q0,∞)).
Hence :

‖Tf‖pp 6 p

ˆ +∞

0

αp−1µ{|Tf1,α| >
α

2
}dα+ p

ˆ +∞

0

αp−1µ{|Tf2,α| >
α

2
}dα

6 C

(
p

ˆ +∞

0

αp−1

(
2

α
‖f1,α‖p0

)p0

dα + p

ˆ +∞

0

αp−1

(
2

α
‖f2,α‖q0

)q0

dα

)

6
F-T

C2q0p

(
ˆ +∞

0

αp−1−p0‖f1,α‖p0p0dα+

ˆ +∞

0

αp−1−q0‖f2,α‖q0q0dα
)

6 C2q0p

(
ˆ

X

ˆ +∞

0

(
|f(x)|p01|f |>α(x)α

p−1−p0 + |f(x)|q01|f |6α(x)α
p−1−q0

)
dαdµ(x)

)

6 C2q0p
(

1
p−p0

+ 1
q0−p

)
‖f‖pp.

Remark : We can reduce the hypothesis and replace ”weak-type (r, r)” by ”for all A mea-

surable subset of X , ‖T (1A)‖r,∞ . µ(A)
1
r .”

This is called the restricted type of interpolation (see [GRAF108]).

Now we give the theorem of complex interpolation : Riesz-Thorin interpolation theorem.
We speak about ”complex” interpolation beacause the proof uses complex analysis.

Theorem 2 (Riesz-Thorin interpolation theorem (see (GRAF108))). Let (p0, q0) ∈ [1,∞]2

such that p0 < q0. Let T be a C-linear operateur defined on Lp0(X, µ) + Lq0(X, µ) which is of
strong-type (p0, p0) with constant Cp0 and of strong-type (q0, q0) with constant Cq0.
Then T is of strong-type (p, p), for all p ∈]p0, q0[ with constant C 6 C1−θ

p0
Cθ

q0
where θ ∈]0, 1[

such that 1
p
= 1−θ

p0
+ θ

q0
.
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1.3.2 Hardy-Littlewood maximal operator

Definition 10. The Hardy-Littlewood maximal function is defined by

∀x ∈ Rn, ∀f ∈ L1
loc(R

n),Mf(x) = sup{ 1

|Q|

ˆ

Q

|f(y)|dy/x ∈ Q ∈ Q}.

The Hardy-Littlewood operator is defined by

M : f 7→ Mf.

BWe are not working with dyadic cubes here.

Proposition 2.

• M is of weak-type (1, 1).

• M is of strong-type (p, p), for all p ∈]1,∞].

Proof :
This proof is the fist example in this intership report where we use a ”stopping time” argument :
we build a process where at each step we choose a ”good” collection of cubes (here) or intervals
(further) on which we control a certain quantity.

• Let f ∈ L1
loc(R

n).
∗ Let λ > 0. Let x ∈ Rn such that Mf(x) > λ.

Then, there exists Q ∈ Q such that x ∈ Q and 1
|Q|

ˆ

Q

|f(y)|dy > λ.

Thus, {x ∈ Rn/Mf(x) > λ} is an open set in Rn.
∗ Let K be a compact set in Rn such that

K ⊂ {x ∈ Rn/Mf(x) > λ}.

With Borel-Lebesgue property, we have K ⊂
N⋃

i=1

Qi, where N ∈ N∗ and for all i ∈ J1, NK,

Qi ∈ Q and 1
|Qi|

ˆ

Qi

|f(y)|dy > λ.

For that, we give a ”stopping-time argument”.
Let Q̃1 be such that ∃i0 ∈ J1, NK, Q̃1 = Qi0 and ∀i ∈ J1, NK, |Qi| 6 |Q̃1|
We keep him and all other Q touching him, we form with them a collection C1 and we
set

I1 = {i ∈ J1, NK/Qi ∈ C1}.
Then, let Q̃2 such that ∃j0 ∈ J1, NK\I1, Q̃2 = Qj0 and ∀i ∈ J1, NK\I1, |Qi| 6 |Q̃2|. And
we repeat the process.
Finally, we have built a family (Q̃j)j∈N such that

|K| 6 3n
∑

j∈N

|Q̃j|.

10



l 3lQ̃j

At step j, we get Q̃j (in red) and we keep it and all blue cubes in the collection Cj.

At the end, as the (Q̃j)j∈N are pairewise disjoint, we have :

|K| 6 3n
∑

j∈N

|Q̃j | 6
3n

λ

∑

j∈N

ˆ

Q̃j

|f(y)|dy 6
3n

λ
‖f‖1.

We conclude with the regularity of Lebesgue’s measure :

|{x ∈ Rn/Mf(x) > λ}| = sup{|K|/K ⊂ {x ∈ Rn/Mf(x) > λ}, K compact} 6
3n

λ
‖f‖1.

So M is of weak-type (1, 1).

• Clearly, ∀f ∈ L∞(Rn), ‖Mf‖∞ 6 ‖f‖∞.
So, thanks to Marcinkiewicz interpolation theorem, M is of strong-type (p, p) for all
p ∈]1,∞].

1.3.3 Square operator

The square operator is the heart of the Littlewood-Paley theory on which my mentors work.
Here we present its dyadic (so descreatized) form through Haar functions and its main proper-
ties. The next part of this internship report is dedicated to prove those results without using
the classical theory, but only ”simple” arguments.

Definition 11. We define the square function associated with some finite collection I of dyadic
intervals by

∀x ∈ Rn, ∀f ∈ L1
loc(R), SIf(x) =

(
∑

I∈I

|〈f, hI〉|2|hI(x)|2
) 1

2

.

The square operator is defined by
SI : f 7→ SIf.

Proposition 3. The square operator is bounded on L2(R).

Proof :
Thanks to the orthogonal property of Haar functions, we have :

‖SIf‖2 =
(
ˆ

R

∑

I∈I

|〈f, hI〉hI(x)|2dx
) 1

2

= ‖
∑

I∈I

〈f, hI〉hI‖2 6 ‖f‖2.

So the square operator is bounded on L2(R).

11



Proposition 4. The square operator is of weak-type (1, 1) and of strong-type (p, p) for all
p ∈]1,∞[.

Remark : This is this result we will focus on and prove in the last part using an other
method that the usual one based on the Calderon-Zygmund decomposition (see [MS213]).

We will need the linearization of the square operator (which is clearly not linear). For that,
we need the following inequalities :

Proposition 5 (Kintchine’s inequalities). Let p ∈ [1,∞[. Let m ∈ N∗.
Then there exists (Ap, Bp) ∈ (R∗

+)
2 such that for all (an)n∈J1,mK ∈ Rm.

Ap

(
m∑

n=1

|an|2
) 1

2

6

(
ˆ 1

0

|
m∑

n=1

anrn(t)|pdt
) 1

p

6 Bp

(
m∑

n=1

|an|2
) 1

2

.

where ∀n ∈ J1, mK, ∀t ∈ [0, 1], rn(t) = sgn(sin(2nπt)) ∈ {−1, 0, 1}.
The rn are called the Rademacher functions.

Remark : The result can be written

(
m∑

n=1

|an|2
) 1

2

≈
(
ˆ 1

0

|
m∑

n=1

|anrn(t)|pdt
) 1

p

.

Proof :

• Let (i, j) ∈ N2 such that i 6= j.

ˆ 1

0

ri(t)rj(t)dt =

ˆ 1

0

sin(2iπt) sin(2jπt)dt

=
1

2

ˆ 1

0

cos((2i − 2j)πt)dt− 1

2

ˆ 1

0

cos((2i + 2j)πt)dt

=
1

2

[
sin((2i − 2j)πt)

(2i − 2j)π

]1

0

− 1

2

[
sin((2i + 2j)πt)

(2i + 2j)π

]1

0

= 0.

Thanks to this orthogonal property, we have A2 = 1 = B2.
Moreover, thanks to the monotonicity of the Lp-norms, we have :

∀(r, p) ∈ [1,∞[2, r 6 p ⇒ (Ar 6 Ap and Br 6 Bp).

So we just have to prove that A1 > 0 and ∀k ∈ N, B2k < +∞.

• We focus on B2k.
We set

E :=

ˆ 1

0

|
m∑

n=1

anrn(t)|2kdt =
ˆ 1

0

(
m∑

n=1

anrn(t)

)2k

dt.

We have :

E =
multinomial

∑

|α|=2k

(2k)!

α1!...αm!
aα1
1 ...aαm

m

ˆ 1

0

rα1
1 (t)...rαm

m (t)dt

=
∑

|α|=k

(2k)!

(2α1)!...(2αm)!
a2α1
1 ...a2αm

m

ˆ 1

0

r2α1
1 (t)...r2αm

m (t)dt

=
∑

|α|=k

(2k)!

(2α1)!...(2αm)!
a2α1
1 ...a2αm

m

12



We have used the fact that

ˆ 1

0

rα1
1 (t)...rαm

m (t)dt =

{
0 if ∃i ∈ J1, mK, αi ≡ 1 [2]
1 if ∀i ∈ J1, mK, αi ≡ 0 [2]

. But

for all α ∈ Nm such that |α| = k, we have :

2kα1!...αm! = (2α1α1!)...(2
αmαm!) 6 (2α1)!...(2αm)!.

Hence,

E 6
(2k)!

2kk!

∑

|α|=k

k!

α1!...αm!
a2α1
1 ...a2αm

m =
(2k)!

2kk!

(
m∑

n=1

|an|2
)k

.

Thus,

E
1
2k 6

(
(2k)!

2kk!

) 1
2k

(
m∑

n=1

|an|2
) 1

2

.

So

B2k =

(
(2k)!

2kk!

) 1
2k

< +∞.

• Now we focus on A1.

We set f(t) =
m∑

n=1

anrn(t).

ˆ 1

0

|f(t)|2dt =

ˆ 1

0

|f(t)| 23 |f(t)| 43dt

6
Hölder

(
ˆ 1

0

|f(t)|dt
) 2

3
(
ˆ 1

0

|f(t)|4
) 1

3

6

(
ˆ 1

0

|f(t)|dt
) 2

3

B
4
3
4

(
m∑

n=1

|an|2
) 2

3

=

(
ˆ 1

0

|f(t)|dt
) 2

3

B
4
3
4 ‖f‖

4
3
2 .

Thus, (
ˆ 1

0

|f(t)|dt
)2

3

> B
− 4

3
4

(
ˆ 1

0

|f(t)|2
) 1

3

.

Hence

ˆ 1

0

|
m∑

n=1

anrn(t)|dt =
ˆ 1

0

|f(t)|dt > B−2
4

(
ˆ 1

0

|f(t)|2
) 1

2

= B−2
4

(
m∑

n=1

|an|2
) 1

2

.

So
0 < B−2

4 6 A1.

Definition 12. We define the linearization of the operator SI as the multiplier operator TI

given by

∀f ∈ L1
loc(R), ∀x ∈ R, TIf(x, t) =

∑

I∈I

rI(t)〈f, hI〉hI(x), for some t ∈ [0, 1].

We write TI := TI(., t) for some fixed t ∈ [0, 1].

13



Remark : We have ‖SIf‖p ≈
(
ˆ 1

0

ˆ

R

|TIf(x, t)|pdxdt
) 1

p

.

Proposition 6. The multiplier operator TI is self-adjoint, i.e. T ∗
I = TI .

Proof :
Let t ∈ [0, 1]. Let (f, g) ∈ S(R)2.

〈TIf, g〉 =

ˆ

R

TIf(x)g(x)dx (1)

=

ˆ

R

∑

I∈I

rI(t)〈f, hI〉hI(x)g(x)dx (2)

=

ˆ

R

∑

I∈I

rI(t)

(
ˆ

R

f(u)hI(u)du

)
hI(x)g(x)dx (3)

=
Fubini

ˆ

R

∑

I∈I

rI(t)f(u)hI(u)

(
ˆ

R

hI(x)g(x)dx

)
du (4)

=

ˆ

R

∑

I∈I

rI(t)f(u)hI(u)〈hI , g〉du (5)

= 〈f, TIg〉 (6)

By uniqueness of the adjoint, we can conclude T ∗
I = TI .
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2 An alternative proof for the boundedness of the square

operator

This second part is the one my mentors wanted me to reach. In her thesis [CB15], Cristina
Benea gave an alternative proof of the Lp boundedness of the square function for p ∈]1,∞[. My
goal was to prove the boundedness of this operator, using the same methods, in the following
cases :

• L1(R) −→ L1,∞(R),

• H1(R) −→ L1(R),

• L∞(R) −→ BMO(R).

Let’s recall that, for a given finite collection I of dyadic intervals, the square function is defined
by

SIf(x) =

(
∑

I∈I

|〈f, hI〉|2|hI(x)|2
) 1

2

.

And

∀x ∈ R, ∀I ∈ I, |hI(x)|2 =
1

|I|(1Il(x)− 1Ir(x))
2 =

1

|I|1I(x).

Hence

SIf(x) =

(
∑

I∈I

|〈f, hI〉|2|hI(x)|2
) 1

2

=

(
∑

I∈I

|〈f, hI〉|2
|I| 1I(x)

) 1
2

.

2.1 The main cases

2.1.1 Cristina’s proof: the case Lp −→ Lp for p ∈]1,∞[

We give here the proof she wrote in [CB15], but with more details and explanations.
Let I be any collection of dyadic intervals.
We consider the square operator SI associated with I.
The idea of the proof :

• We want to estimate ‖SIf‖p so we dualize the Lp norm : ‖SIf‖p = sup
‖g‖p′61

ˆ

R

SIf(x)g(x)dx

(as S(R) is dense in Lp′(R), we just have to consider g ∈ S(R)).

• We apply the lemma 2 by localizing the operator on ”good” dyadic intervals I0 on which
we have the control on the averages of g and the L2 norm of f in order to bound the

quantities

ˆ

R

S̃I0f(x)g(x)dx, where S̃I0 is the localized operator on I0.

Let I0 ∈ D. Let I be the collection of the dyadic intervals of I which are contained in I0 :
∀I ∈ I, I ∈ I and I ⊂ I0.
We set I+(I0) = {I ′ ∈ D/∃I ∈ I, I ⊂ I ′ ⊂ I0}. and

∀g ∈ S(R), sizeI0(g) = sup{ 1

|3I ′|

ˆ

R

13I′(y)|g(y)|dy/I ′ ∈ I+(I0)}.
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BLet’s recall that 3I ′ is defined as the dyadic interval with the same center than I ′ but three
times larger than I ′.
We begin with a lemma which focuses on localised square function

S̃I0f(x) =

(
∑

I∈I

|〈f, hI〉|2|hI(x)|2
) 1

2

.

Lemma 2.

∀f ∈ L1
loc(R), ∀g ∈ S(R), |

ˆ

R

S̃I0f(x)g(x)dx| . sizeI0(g)
‖f1I0‖2
|I0|

1
2

|I0|.

Proof :
Let g ∈ S(R). Let f ∈ L1

loc(R).
We set J = {J ∈ D/∀I ∈ I, I  3J and J is maximal with this property}.
We have the existence of J because we consider a finite collection of dyadic intervals.

• We can easily see that they form a partition of R (thanks to the maximality condition
associated to dyadic properties (propositon 1)). You can think about them as obtained
by ”Whitney” decompositions (see [GRAF108]).
So

ˆ

R

S̃I0f(x)g(x)dx =
∑

J∈J

ˆ

J

S̃I0f(x)g(x)dx =
∑

J∈J

ˆ

J

(
∑

I∈I

|〈f, hI〉|2
|I| 1I(x)

) 1
2

g(x)dx.

Let J ∈ J. If ∀I ∈ I, J ∩ I = ∅, then thanks to the characteristic function appearing in
the above expression, we don’t count the term associated to this J in the summation.
Otherwise, for all I ∈ I such that I ∩ J 6= ∅, thanks to properties of dyadic intervals we
have J ⊂ I or I ⊂ J . The last possibility is impossible by definition of J . So J  I and
thus |J | < |I|.
Hence, thanks to the triangle inequality, we get :

|
ˆ

R

S̃I0f(x)g(x)dx| = |
∑

J∈J

ˆ

J


 ∑

I∈I,|I|>|J |

|〈f, hI〉|2
|I| 1I(x)




1
2

g(x)dx| (7)

6
∑

J∈J

ˆ

J


 ∑

I∈I,|I|>|J |

|〈f, hI〉|2
|I| 1I(x)




1
2

|g(x)|dx. (8)

• Now we focus on each integral.
Let J ∈ J.
∗ As J is maximal with the property of no-inclusion, then J̃ isn’t. So there exists IJ ∈ I

such that IJ ⊂ 3J̃ . So IJ ⊂ J̃ or IJ ⊂ ˜̃
J (or a translate of one unit). Hence, there exists

I ′ ∈ D such that I ′ ∈ I+(I0), J ⊂ 3I ′ and |J | < |I ′| 6 4|J |.
∗ Let I ∈ I such that |I| > |J |. If I ∩ J = ∅, then, thanks to the characteristic function,
we don’t count the term associated to this I in the summation. Otherwise, we have J  I
and then

∀x ∈ J,


 ∑

I∈I,|I|>|J |

|〈f, hI〉|2
|I| 1I(x)︸ ︷︷ ︸

=1




1
2

=


 ∑

I∈I,|I|>|J |

|〈f, hI〉|2
|I|




1
2

:= C(J) constant.
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Moreover,

∀x ∈ R, C(J) =

(
∑

I∈I

|〈f, hI〉|2
|I| 1I(x)

) 1
2

1J(x).(⋆)

Hence,

ˆ

J


 ∑

I∈I,|I|>|J |

|〈f, hI〉|2
|I| 1I(x)




1
2

|g(x)|dx =

ˆ

R

=3|I′|612|J |︷︸︸︷
|3I ′|
|3I ′| 1J(x)︸ ︷︷ ︸

613I′ (x)

C(J)|g(x)|dx (9)

6 12|J |C(J)
1

|3I ′|

ˆ

R

13I′(x)|g(x)|dx
︸ ︷︷ ︸

6sizeI0(g)

(10)

. sizeI0(g)|J |C(J) (11)

.
(⋆)

sizeI0(g)

ˆ

J

(
∑

I∈I

|〈f, hI〉|2
|I| 1I(x)

) 1

2

︸ ︷︷ ︸
=SIf(x)

dx(12)

• Thanks to (8), (12) and the Cauchy-Schwarz inequality, we have (summing over J) :

|
ˆ

R

S̃I0f(x)g(x)dx| . sizeI0(g)‖SIf‖2
√

|J |︸ ︷︷ ︸
6
√

|I0|

6
cfprop3

sizeI0(g)
‖f1I0‖2
|I0|

1
2

|I0|.

Theorem 3. For all p ∈ [2,∞[, SI is of strong-type (p, p).

Proof :
Let p ∈]1,∞[. Let p′ ∈]1,∞[ such that 1

p
+ 1

p′
= 1.

It suffices to show thanks to restricted type interpolation (see [GRAF108]) that

∀f ∈ L1
loc(R), ∀g ∈ S(R), ∀(F,G) ∈ B(R)2, (|f | 6 1F and |g| 6 1G) ⇒ |

ˆ

R

SIf(x)g(x)dx| . |F | 1p |G|
1
p′ .

The previous lemma shows us that, to prove the boundedness of the operator SI , it suffices to
control the bound on g (through sizeI0(g)) and the one on f (through ‖f1I0‖2).
We use for that a stopping-time argument.

• First, we focus on f .
∗ At step k , we set

Ink
=




I0 ∈ D/

∃I ∈ I, I ⊂ I0, ∀i ∈ J1, k − 1K, I0 6∈ Ini

2−nk−1 6 1
|I0|

´

R
1F (x)1I0(x)dx 6 2−nk

∀I ′ ⊂ I0, (∃I ∈ I, I ⊂ I ′) ⇒ 1
|I′|

´

R
1F (x)1I′(x)dx 6 2−nk

I0 maximal with this property





.

The reader can take nk = k ∈ N even if it means that Ink
= ∅. Actually, we choose

nk+1 = min{n ∈ N\J0, nkK/In 6= ∅}.
The purpose is to get intervals which control the boundedness in f and taken with maximal
and optimal conditions. Thus, we build a strictly increasing sequence (nk)k∈N ∈ NN and
the associated sequence (In

k
)k∈N until we exhaust all the intervals in I (which one is

countable so the stopping-time argument can be used).
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∗ Let k ∈ N. Let I0 ∈ Ink
.

We have

2−nk−1 6
1

|I0|

ˆ

R

1F (x)1I0(x)dx ⇔ |I0|
2

6 2nk

ˆ

I0

1F (x)dx.

Summing over all I0 in Ink
, as they are pairewise disjoint thanks to their maximal condi-

tion, we have :

1

2

∑

I0∈Ink

|I0| 6 2nk

∑

I0∈Ink

ˆ

I0

1F (x)dx = 2nk

ˆ

R

1F (x)dx = 2nk |F |.

Thus, ∑

I0∈Ink

|I0| . 2nk |F | (⋆)

• Now we focus on g.
∗ At step l, we want to control size(g) for intervals in the collection I.
We choose Ml ∈ I such that Ml is maximal with the property

1

|3Ml|

ˆ

R

13Ml
(x)|g(x)|dx = sup

I∈I

1

|3I|

ˆ

R

13I(x)|g(x)|dx 6 2−ml.

(The sup is a max because we consider a finite collection I, so such an interval exists).
We set

Iml
=



I ′0 ∈ D/

Ml ⊂ I ′0, ∀i ∈ J1, l − 1K, I ′0 6∈ Imi

2−ml−1 6 1
|3I′0|

´

R
13I′0(x)|g(x)|dx 6 2−ml

I ′0 maximal with this property



 .

One more time, the reader can take ml = l.
The purpose is to get intervals which control the boundedness in g and taken with maximal
and optimal conditions. Thus, we build a strictly increasing sequence (ml)l∈N ∈ NN and
the associated sequence (Im

l
)l∈N until we exhaust all the intervals in I.

∗ For all l ∈ N, the I ′0 ∈ Iml
are pairewise disjoint thanks to their maximal condition.

Because of the sup, we can’t conclude directly to an equality of the form (⋆).
We need that the Hardy-Littlewood maximal operator is of weak-type (1, 1) :

∀l ∈ N,
∑

I′0∈Iml

|I ′0| = |
⊔

I′0∈Iml

I ′0| (13)

6 |{x ∈ R/Mg(x) > 2−ml}| (14)

6 |{x ∈ R/M1G(x) > 2−ml}| (15)

. 2ml‖1G‖1 (16)

= 2ml|G|. (17)

Thus ∑

I′0∈Iml

|I ′0| . 2ml |G| (⋆)

• We need to dualize the l2 norm (knowing that (l2)∗ = l2) :

(
∑

I∈I

|〈f, hI〉|2
|I| 1I(x)

) 1
2

=
∑

I∈I

εI(x)〈f, hI〉hI(x) with

(
∑

I∈I

εI(x)

) 1
2

= 1 for a.e. x ∈ R.
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Then, localizing we have :
ˆ

R

SIf(x)g(x)dx =

ˆ

R

∑

I∈I

εI(x)〈f, hI〉hI(x)g(x)dx (18)

=
∑

(k,l)∈N2

∑

I0∈Ink
∩Iml

ˆ

R

∑

I∈I,I⊂I0

εI(x)〈f, hI〉hI(x)g(x)dx. (19)

Then, the lemma 2 and the definitions of Ink
and Iml

give :

|
ˆ

R

SIf(x)g(x)dx| 6
∑

(k,l)∈N2

∑

I0∈Ink
∩Iml

|〈S̃I0f, g〉| .
∑

(k,l)∈N2

∑

I0∈Ink
∩Iml

2
−nk
2 2−ml|I0|.

BThe 1
2
in the power of 2 comes from the L2 norm of the characteristic function of F

appearing in lemma 2 whereas we considered only the L1 norm in the beginning of this
proof. The L2 and L1 norm of a characteristic function being very close, we only get this
1
2
.

Taking a geometric average of (⋆) and (⋆) we have for all (θ1, θ2) ∈ (R∗
+)

2 such that
θ1 + θ2 = 1 :

|
ˆ

R

SIf(x)g(x)dx| .
∑

(k,l)∈N2

2
−nk
2 2−ml(2nk |F |)θ1(2ml|G|)θ2 =

∑

(k,l)∈N2

2−nk(
1
2
−θ1)2−ml(1−θ2)|F |θ1|G|θ2.

To reach our goal, we take θ1 =
1
p
and θ2 =

1
p′
.

BTo still have a convergent serie, we must have 1
2
− 1

p
> 0 which implies p > 2.

The case p = 2 has already been proved in the first part of this internship report.

Now we prove the Lp boundedness for p ∈]1,∞[ looking at the linearization of SI , we denoted
by TI (recall that t is fixed in [0, 1]).

∀f ∈ L1
loc(R), ∀x ∈ R, TIf(x) =

∑

I∈I

rI(t)〈f, hI〉hI(x).

Theorem 4. For all p ∈]1,∞[, TI is of strong-type (p, p).

Proof :
We take the proof of the lemma 2. It’s identical until the use of the Cauchy-Schwarz inequality.
We just have to prove the L2 boundedness of TI .
Let f ∈ L1

loc(R).

We have, writing T̃I0 the localized operator,

‖T̃I0f‖2 = 〈
∑

I∈I

rI(t)〈f, hI〉,
∑

I′∈I

rI′(t)〈f, hI′〉hI′〉 (20)

⊥
=

∑

I∈I

|〈f, hI〉|2 (21)

= 〈f,
∑

I∈I

〈f, hI〉hI〉 (22)

6
Cauchy-Schwarz

‖f‖2‖
∑

I∈I

〈f, hI〉hI‖2 (23)

⊥
= ‖f‖2

(
∑

I∈I

|〈f, hI〉|2
) 1

2

(24)

6
Bessel

‖f‖22 (25)
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Then the proof of the lemma 2 is done for TI . The boundedness for p > 2 is identical.
Finally, as TI is self-adjoint (proposition 6), we can conculde by duality (∀p ∈]1,∞[, (Lp(R))∗ =
Lp′(R)) that TI is of strong type (p, p) for all p ∈]1,∞[.

2.1.2 Case L1 −→ L1,∞

Now we want to get the previous result also for p = 1. The theory gives that actually SI (or
TI) is of weak-type (1, 1). Our job is to prove this result using the previous method (and not
the ”classical” one based on the Calderon-Zygmund decomposition).

We have to see where are the problems in the previous proofs in order to defuse it.

• The previous proofs give that the operator is of strong-type, but we want it to be of
weak-type.
To prove the boundedness in Lp we used the dualization of the Lp norm. Here we need
the dualization of the weak-L1 semi-norm if we want to use the same method.

• In the last formular of the theorem 3, we can’t take θ2 = 0 (i.e. p′ = ∞, i.e. p = 1).
Otherwise we would get a non-summable serie.

As noted in the first remark above, we need to dualise the semi-norm ‖.‖1,∞. This result is
given by the following lemma (see [GRAF108]) :

Lemma 3 (Dualization of the semi-norm ‖.‖1,∞).

‖f‖L1,∞(R) ≈ sup
E⊂R,0<|E|<∞

inf
E′⊂E,|E′|> 1

2
|E|

|
ˆ

E′

f(x)dx|.

Now, we see that we have to estimate the quantities

ˆ

R

TIf(x)1E′(x)dx = 〈TIf, 1E′〉.

Theorem 5. TI is of weak-type (1, 1).

Proof :

• Using the self-adjointness of the operator TI and the lemma 2, we have

∀f ∈ S(R), ∀E ′ ⊂ R, |〈TIf, 1E′〉| = |〈f, TI1E′〉| . sizeI0(f)
‖1E′1I0‖2
|I0|

1
2

|I0|.

The idea is to exchange the roles of f and g = 1E′, thanks to duality, in order to get back
the case p = 1 as we did in proposition 7 to get the case p ∈]1, 2[.

• Let f ∈ S(R). Thanks to the linearity of TI , we can suppose ‖f‖1 = 1.
Let E ⊂ R such that 0 < |E| < ∞. We can assume |E| = 1.
We set

Ω = {x ∈ R/Mf(x) > C} and E ′ = E\Ω.
C will be chosen correctly (high enough) such that |E ′| > 1

2
|E|.

For all d ∈ N, we set Id = {I ∈ D/1 + dist(I,Ωc)
|I|

≈ 2d}.
Now we perform the stopping time argument as in the original proof at each fixed d ∈ N.
Let d ∈ N.
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∗ We focus on f :
At step k, we choose Mk ∈ I such that Mk is maximal with the property

1

|3Mk|

ˆ

R

13Mk
(x)|f(x)|dx = sup

I∈I

1

|3I|

ˆ

R

13I(x)|f(x)|dx 6 2−nk

where we choose the largest possible value of 2−nk .
(The sup is a max because we consider a finite collection I, so such an interval exists).
We set

Id
nk

=



I ′0 ∈ D ∩ Id/

Mk ⊂ I ′0, ∀i ∈ J1, k − 1K, I ′0 6∈ Id
ni

2−nk−1 6 1
|3I′0|

´

R
13I′0(x)|f(x)|dx 6 2−nk

I ′0 maximal with this property



 .

Thus, we build a strictly increasing sequence (nk)k∈N ∈ ZN and the associated sequence
(In

k
)k∈N until we exhaust all the intervals in I.

Thanks to the fact that the Hardy-Littlewood maximal operator is of weak-type (1, 1),
we have :

∀k ∈ N,
∑

I′0∈I
d
nk

|I ′0| = |
⊔

I′0∈I
d
nk

I ′0| (26)

6 |{x ∈ R/Mf(x) > 2−nk}| (27)

. 2nk‖f‖1 (28)

= 2nk . (29)

Thus, ∑

I′0∈I
d
nk

|I ′0| . 2nk

Moreover, let I ′0 ∈ Id
nk
. By definition of I ′0, we have that

2dI ′0 ∩ Ωc 6= ∅.

(Actually, Ink
needn’t be in Id in order that the previous formula holds (and that solves

a possible problem of existence)).
So there exists x0 ∈ 2dI ′0 ∩ Ωc. We have :

Mf(x0) 6 C and so
1

|2dI ′0|

ˆ

2dI′0

|f(x)|dx 6 C.

We choosed I ′0 such that :
1

|3I ′0|

ˆ

3I′0

|f(x)|dx ≈ 2−nk

But, as 3I ′0 ⊂ 2dI ′0 (for d > 2), we have :

2−nk .
1

|3I ′0|

ˆ

3I′0

|f(x)|dx 6
1

|3I ′0|

ˆ

2dI′0

|f(x)|dx . 2d
1

|2dI ′0|

ˆ

2dI′0

|f(x)|dx 6 2dC . 2d.

If d = 0 (resp. d = 1), we have I ⊂ 4I (resp. 2I ⊂ 4I).
As I ∈ I0 (resp. I ∈ I1), we have I ∩ Ωc 6= ∅ (resp. 2I ∩ Ωc 6= ∅).
So 4I ∩ Ωc 6= ∅ and we have the same result.
Hence we have :

2−nk . 2d
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Remark : This last expression also states that we will still have a convergent serie, because,
even if this time nk ∈ Z, it can’t be ”too much” negative and thus we can sum.
∗ Now we focus on 1E′ :
At step l , we set

Id
ml

=




I0 ∈ D ∩ Id/

∃I ∈ I, I ⊂ I0, ∀i ∈ J1, l − 1K, I0 6∈ Id
mi

2−ml−1 6 1
|I0|

´

R
1E′(x)1I0(x)dx 6 2−ml

∀I ′ ⊂ I0, (∃I ∈ I, I ⊂ I ′) ⇒ 1
|I′|

´

R
1E′(x)1I′(x)dx 6 2−ml

I0 maximal with this property





.

Thus, we build a strictly increasing sequence (ml)l∈N ∈ NN and the associated sequence
(Im

l
)l∈N until we exhaust all the intervals in I

We still have

1

2

∑

I0∈Id
ml

|I0| 6 2ml

∑

I0∈Id
ml

ˆ

I0

1E′(x)dx 6 2ml

ˆ

R

1E′(x)dx = 2ml|E ′| . 2ml.

Thus, ∑

I0∈Id
ml

|I0| . 2ml

We know that supp(1E′) = E ′ ⊂ Ωc. Let l ∈ N.
If I ′0 ∈ Id

ml
, then I ′0 ∩ E ′ 6= ∅. So I ′0 ∩ Ωc 6= ∅. So dist(I ′0,Ω

c) = 0. So 1 ≈ 2d. So d = 0.
Hence

2−ml . 2−Md

for an arbitrary M > 2.

• Thus, we have :

|〈TIf, 1E′〉| 6

∞∑

d=0

∑

(k,l)∈N2

∑

I0∈Id
nk

∩Id
ml

|〈T̃I0f, 1E′〉| (30)

.

∞∑

d=0

∑

(k,l)∈N2

∑

I0∈Id
nk

∩Id
ml

sizeI0(f)
‖1E′1I0‖2
|I0|

1
2

|I0| (31)

.

∞∑

d=0

∑

(k,l)∈N2

2−nk2−
ml
2

∑

I0∈Id
nk

∩Id
ml

|I0| (32)

.

∞∑

d=0

∑

(k,l)∈N2

2−nk2−
ml
2 2

2nk
3 2

ml
3 (33)

=
∞∑

d=0

∑

(k,l)∈N2

2−
nk
3 2−

ml
6 (34)

.

∞∑

d=0

2
d
32−

Md
6 (35)

=

(
∞∑

d=0

2
d
6
(2−M)

)
‖f‖1︸︷︷︸
=1

(36)
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Remark : Only the term corrsponding to d = 0 is present, but we chosed to let the serie
appearing because in the case of general wevelets (different from the Haar system) this is
the point.
Hence,

∀f ∈ L1(R), ‖TIf‖L1,∞(R) . ‖f‖L1(R)

i.e. TI : L1(R) −→ L1,∞(R) is bounded.

2.2 Cases H1 −→ L1 and L∞ −→ BMO

2.2.1 Case H1 −→ L1

Theorem 6. TI : H1(R) −→ L1(R) is bounded.

Proof :
Let f ∈ H1(R).

There exists λ = (λi)i∈N ∈ l1(N,C) and (ai)i∈N a sequence of atoms such that f =
∞∑

i=0

λiai.

Assume for now that we have :

TIf =
∞∑

i=0

λiTIai (⋆)

So by the triangle inequality we have :

‖TIf‖1 6
∞∑

i=0

|λi|‖TIai‖1.

So we have to estimate the quantities ‖TIai‖1.
Let i ∈ N. We set g(x) = 1TIai>0(x)− 1TIai<0(x).

‖TIai‖1 =
ˆ

R

|TIai(x)|dx = 〈TIai, g〉 =
∑

I∈I

rI(t)〈f, hI〉〈hI , g〉.

Let Qi be as in the definition of the Hardy space :

• supp(ai) ⊂ Qi (1)

• ‖ai‖2 6 1√
|Qi|

(2)

•
ˆ

Qi

ai(x)dx = 0 (3)

We look at 〈ai, hI〉 =
(1)

ˆ

Qi

ai(x)hI(x)dx.

∗ If I ∩Qi = ∅, then 〈ai, hI〉 = 0. So we can not count those intervals in the summation.
∗ Otherwise, we have Qi  I or I ⊂ Qi (dyadic properties).
If Qi  I, then Qi ⊂ Il or Qi ⊂ Ir (dyadic properties).
We can suppose by symmetry that Qi ⊂ Il.
Then :

〈ai, hI〉 =
ˆ

Il

ai(x)√
|I|

dx =
1√
|I|

ˆ

Qi

ai(x)dx =
(3)

0.
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So we don’t count those intervals in the summation.
Thus we only have to consider the localized operator T̃Qi

on the interval Qi.

‖TIai‖1 = ‖T̃Qi
ai‖1 (37)

= 〈T̃Qi
ai, g1Qi

〉 (38)

.
lemma 2

sizeQi
(g)︸ ︷︷ ︸

62

‖ai1Qi
‖2

|Qi|
1
2

|Qi| (39)

.
‖ai‖2
|Qi|

1
2

|Qi| (40)

6
(2)

1 (41)

Finally,

‖TIf‖1 .
∞∑

i=0

|λi| = ‖λ‖l1(N,C).

Taking the infimum, we get
‖TIf‖1 . ‖f‖H1 .

But we stil have to prove (⋆).
Let α > 0. Let n ∈ N.
As TI : L1(R) −→ L1,∞(R) is bounded, we have :

|{x ∈ R/|TIf(x)−
∞∑

i=0

λiTIai(x)| > α}|

6 |{x ∈ R/|TIf(x)−
n∑

i=0

λiTIai(x)| >
α

2
}|+ |{x ∈ R/|

∞∑

i=n+1

λiTIai(x)| >
α

2
}|

6
2

α
‖TI‖1→(1,∞)‖f −

n∑

i=0

λiai‖1 +
2

α
‖

∞∑

i=n+1

λiTIai‖1

6
2

α
‖TI‖1→(1,∞)‖f −

n∑

i=0

λiai‖1 +
2

α

∞∑

i=n+1

|λi| ‖TIai‖1︸ ︷︷ ︸
.1

. ‖f −
n∑

i=0

λiai‖1 +
∞∑

i=n+1

|λi|.

But as f =

∞∑

i=0

λiai in H1(R),

(
n∑

i=0

λiai

)

n∈N

converges to f in L1(R).

Moreover, as λ ∈ l1(N,C),

(
∞∑

i=n+1

|λi|
)

n∈N

converges to 0.

Thus,

∀α > 0, |{x ∈ R/|TIf(x)−
∞∑

i=0

λiTIai(x)| > α}| = 0.

Hence

TIf =

∞∑

i=0

λiai a.e.
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2.2.2 Case L∞ −→ BMO

Theorem 7. TI : L∞(R) −→ BMO(R) is bounded.

Proof :
As

• (H1(R))∗ = BMO(R),

• (L1(R))∗ = L∞(R),

• T ∗
I = TI ,

• TI : H1(R) −→ L1(R) is bounded,

we have : TI : L∞(R) −→ BMO(R) is bounded.

Final remark : In the case Lp for p ∈]1,∞[, it wasn’t rectrive to work with a finite collection I
of dyadic intervals.
Indeed, as D = {[k2n, (k + 1)2n[/(k, n) ∈ Z2}, an infinite collection of dyadic intervals is a
countable set. Let I∞ be an infinite collection dyadic intervals :

I∞ := {Ij, j ∈ N}.

Let f ∈ Lp(R).
For all j ∈ N, we set Ij := {Ik/k ∈ J0, jK} and fj := SIj(f) ∈ Lp(R).
∀j ∈ N, fj > 0 and (fj)j∈N is an increasing sequence which converges a.e. to f∞ := SI∞(f).
Moreover, ∀j ∈ N, ‖fj‖p 6 C‖f‖p with C independant of j and f.
Hence, by the monotone convergence theorem, ‖f∞‖p 6 M‖f‖p and SI∞ : Lp(R) −→ Lp(R) is
bounded.
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3 The T (1) theorem

3.1 Singular integral operators

3.1.1 Calderon-Zygmund operators

Definition 13. Let α ∈]0, 1]. We call Calderon-Zygmund kernel of order α a continuous func-
tion K : ∆c → C such that there exist C > 0 such that :

• ∀(x, y) ∈c ∆, |K(x, y)| 6 C
|x−y|n

.

• ∀(x, y, y′) ∈ (Rn)3, (2|y−y′| 6 |x−y| and x 6= y) ⇒ |K(x, y)−K(x, y′)| 6 C( |y−y′|
|x−y|

)α 1
|x−y|n

.

• ∀(x, x′, y) ∈ (Rn)3, (2|x−x′| 6 |x−y| and x 6= y) ⇒ |K(x, y)−K(x′, y)| 6 C( |x−x′|
|x−y|

)α 1
|x−y|n

.

We write K ∈ CZKα.

Remark : These are technical conditions of smoothness and such a kernel present a singu-
larity on {x = y}.

Definition 14. Let α ∈]0, 1]. Let K ∈ CZKα. Let T ∈ L(L2(Rn)) such that

∀f ∈ S(Rn), T f(x) =

ˆ

Rn

K(x, y)f(y)dy for a.e. x ∈ Rn.

We say that T is a Calderon-Zygmund operator of order α associated to K ∈ CZKα, and we
write T ∈ CZOα.

3.1.2 Singular integral operators

Definition 15. Let T : S(Rn) → S ′(Rn) be an operator. We say that T is a singular integral
operator if its Schwartz kernel K defined by

K ∈ S(R2n) and, 〈K, g ⊗ f〉 = 〈Tf, g〉

when restricted to ∆c belongs to CZKα.
We write T ∈ SIO.

3.2 Two useful lemmas

3.2.1 Cotlar’s lemma

Lemma 4 (Cotlar’s lemma). Let H be a Hilbert space. Let N ∈ N. Let (Ti)16i6N ∈ L(H)N .
Let γ ∈ l1(Z,R+).
We assume that

∀(j, k) ∈ J1, NK, ‖T ∗
j Tk‖ 6 γ(j − k)2 and ‖TjT

∗
k ‖ 6 γ(j − k)2.

Then

‖
N∑

i=1

Ti‖ 6 ‖γ‖l1(Z,R+).
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Proof :

We set T =
N∑

i=1

Ti ∈ L(H).

Since T ∗T is self-adjoint, one has ‖(T ∗T )m‖ = ‖T ∗T‖m = ‖T‖2m.

But (T ∗T )m =
∑

16i1,...,im,j1,...,jm6N

m∏

k=1

T ∗
ik
Tjk .

By ordering the terms, we obtain both :

‖
m∏

k=1

T ∗
ik
Tjk‖ 6

m∏

k=1

γ(ik − jk)
2

and

‖
m∏

k=1

T ∗
ik
Tjk‖ 6 ‖Ti1‖‖Tjm‖

m−1∏

k=1

γ(jk − ik+1)
2.

Taking the geometric average, we have :

‖
m∏

k=1

T ∗
ik
Tjk‖ 6 (‖Ti1‖‖Tjm‖)

1
2

m∏

k=1

γ(ik − jk)
m∏

l=1

γ(jk − ik+1).

Then
‖T‖2m 6 N sup{‖Ti‖/1 6 i 6 N}‖γ‖2ml1(Z,R+).

So
‖T‖ 6 (N sup{‖Ti‖/1 6 i 6 N}) 1

2m‖γ‖l1(Z,R+).

Finaly, when m tends to +∞,
‖T‖ 6 ‖γ‖l1(Z,R+).

3.2.2 Schur’s lemma

Lemma 5 (Schur’s lemma). Let X and Y be spaces. We consider a positive mesure µ⊗ ν on
X × Y . Let K : X × Y → R be a mesurable function. We define

(Tf)(x) =

ˆ

Y

K(x, y)f(y)ν(dy).

Then

• ‖T‖1→1 6 sup{
´

X
|K(x, y)|µ(dx)/y ∈ Y } = A.

• ‖T‖∞→∞ 6 sup{
´

Y
|K(x, y)|ν(dy)/x ∈ X} = B.

• ‖T‖p→p 6 A
1
pB

1
p′ , ∀p ∈ [1,∞] with p′ such that 1

p
+ 1

p′
= 1.

• ‖T‖1→∞ 6 ‖K‖L∞(X×Y ).

Proof :

• Let f ∈ L1(Y, ν).
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‖Tf‖L1(X,µ) =

ˆ

X

|Tf(x)|dx

6

ˆ

X

ˆ

Y

|K(x, y)||f(y)|ν(dy)µ(dx)

=
F-T

ˆ

Y

ˆ

X

|K(x, y)|µ(dx)
︸ ︷︷ ︸

6A

|f(y)|ν(dy)

6 A‖f‖L1(Y,ν).

So
‖T‖1→1 6 A.

• Let f ∈ L∞(Y, ν).

∀x ∈ X, |Tf(x)| 6

ˆ

Y

|K(x, y)| |f(y)|︸ ︷︷ ︸
6‖f‖L∞(Y,ν)

ν(dy)

6 B‖f‖L∞(Y,ν).

So
‖Tf‖L∞(X,µ) 6 B‖f‖L∞(Y,ν).

So
‖T‖∞→∞ 6 B.

• ∗ For p = 1 or p = ∞ we already did it.
∗ Let p ∈]1,∞[.
By Riesz-Thorin interpolation (Theorem 2), we have :

‖T‖p→p 6 A
1
pB

1
p′ .

• Let f ∈ L1(Y, ν).

∀x ∈ X, |Tf(x)| 6

ˆ

Y

|K(x, y)|︸ ︷︷ ︸
6‖K‖L∞(X×Y )

|f(y)|ν(dy)

6 ‖K‖L∞(X×Y )‖f‖L1(Y,ν).

So
‖T‖1→∞ 6 ‖K‖L∞(X×Y ).

3.3 The T(1) theorem

3.3.1 The wording

Theorem 8. Let T be a singular integral operator such that T, T ∗ : S(R) → S ′(R) ∩ L1
loc(R).

Then, the following are equivalent :

(1)





T (1[0,1]) ∈ BMO([0, 1])
T (1[0,1]) ∈ BMO([0, 1]),
∀I ∈ D1,max(‖T (hI)‖2, ‖T ∗(hI)‖2) 6 ‖hI‖2 = 1.

(2) T is bounded on L2([0, 1]).

Remark : Once proved this theorem, we can note that we can extend it to any dyadic
interval. Hence, R can replace [0, 1] in the theorem.
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3.3.2 The proof

• (2) =⇒ (1)

Theorem 9. Let T be a singular integral operator which is bounded on L2([0, 1]).
Then T maps L∞(R) into BMO(R).
Hence T (1[0,1]) ∈ BMO([0, 1]) and T ∗(1[0,1]) ∈ BMO([0, 1]).

Proof :
Thanks to BMO−H1 duality, it suffices to show that there exists C > 0 such that for all atom
a, ‖Ta‖1 + ‖T ∗a‖1 6 C.
Let a be an atom such that supp(a) ⊂ I.
First,

‖Ta‖L1(3I) 6
Hölder

|3I| 12‖Ta‖2 6
T bounded on L2

C|3I| 12‖a‖2 6
atom

√
3C.

Moreover, with yI the center of I, we have :
ˆ

R\3I

|Ta(x)|dx 6

ˆ

R\3I

ˆ

I

|K(x, y)−K(x, yI)||a(y)|dydx

6 C

ˆ

R\3I

ˆ

I

|I|α
dist(x, I)1+α

|a(y)|dydx

6 C‖a‖1
ˆ

R\3I

|I|α
dist(x, I)1+α

dx

6 C‖a‖2|I|
1
2

6 C.

This proves that T maps H1([0, 1]) into L1([0, 1]).
So by duality T maps L∞([0, 1]) into BMO([0, 1]), and the theorem falls.

• (1) =⇒ (2)
We consider only the case T (1[0,1]) = 0 = T ∗(1[0,1]). Actually, the problem can be reduced to
this case using paraproducts. The reader can find the solution in [MS113].

We set for all n ∈ N, An = {[(k − 1)2−n, k2−n[/1 6 k 6 2n} ; Dn =
n⋃

i=0

Ai (so D1 = D∞) ;

Σn = σ(An) ; En(f) = E[f |Σn] for all f ∈ L1([0, 1]) and ∆n = En+1 − En.
By properties of the conditional expectation, we have :

∀n ∈ N, ∀f ∈ L1([0, 1]),En(f) =
∑

I∈An

1I
1

|I|

ˆ

I

f(x)dx.

∗
Proposition 7. ∀n ∈ N, ∀f ∈ L1([0, 1]),∆n(f) =

∑

I∈An

〈f, hI〉hI .

Proof :
We prove it by induction, doing only the case n = 1 (because the idea is here) :
For all f ∈ L1([0, 1]),

E1(f) = 1[0, 1
2
[2

ˆ 1
2

0

f(x)dx+ 1[ 1
2
,1[2

ˆ 1

1
2

f(x)dx

=

ˆ 1

0

f(x)dx+

(
ˆ 1

2

0

f(x)dx−
ˆ 1

1
2

f(x)dx

)
(1[0, 1

2
[ − 1[ 1

2
,1[)

= E0(f) + 〈f, h[0,1[〉h[0,1[.
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∗ The hypothesis implies that TE0 = E0 = 0 so Id =
∑∞

n=0∆n.

Because of the fact that En =
∑

m<n

∆m, we have :

T =

(
∞∑

n=0

∆n

)

︸ ︷︷ ︸
=Id

T

(
∞∑

m=0

∆m

)

︸ ︷︷ ︸
=Id

=

∞∑

n=0

(∆nT∆n + EnT∆n +∆nTEn).

Hence, thanks to the triangle inequality, we just have to estimate the quantities ‖
∞∑

n=0

∆nT∆n‖2→2,

‖
∞∑

n=0

EnT∆n‖2→2 and ‖
∞∑

n=0

∆nTEn‖2→2.

By symmetry, we just have to prove that the first two quantities are bounded. For that we will
use the two useful lemmas.

∗ We focus on the operator

∞∑

n=0

∆nT∆n.

Thanks to the orthogonality properties of the Haar functions and the previous proposition, we
have :

∀(n,m) ∈ N2, n 6= m ⇒ (∆nT∆n)(∆mT∆m)
∗ = 0 = (∆nT∆n)

∗(∆mT∆m).

As a consequence, we have :

‖
∞∑

n=0

∆nT∆n‖2→2 6 sup
n∈N

‖∆nT∆n‖2→2.

Thus, we have to estimate ‖∆nT∆n‖2→2.
An immediate consequence of definition 13 (as T ∈ SIO) is :

∀I ∈ D1, ∀y ∈ [0, 1]\3I, |ThI(y)|+ |T ∗hI(y)| .
|I| 12+α

(|I|+ dist(y, I))1+α
. (⋆)

For n ∈ N, let An = (An
I,J)(I,J)∈(An)2 be the matrix of the operator ∆nT∆n in the basis (hI)I∈An

.
We have :

∀(I, J) ∈ (An)
2, AI,J = 〈hI , ThJ〉.

For all (I, J) ∈ (An)
2, we set kI,J = min{k ∈ N/dist(I,J)

|I|
6 k} (it exists thanks to the funda-

mental property of N).
Thanks to (⋆) and the third hypothesis of the theorem, we have :

|AI,J | .
{

1 if I = J
(1 + kI,J)

−α otherwise

Hence, Schur’s lemma will give that

∀n ∈ N, ‖∆nT∆n‖2→2 6 C where C does not depend on n.

Thus

‖
∞∑

n=0

∆nT∆n‖2→2 . 1.
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∗ Now we focus on the operator

∞∑

n=0

EnT∆n.

Let n ∈ N. Let B = (BI,J)(I,J)∈(An)2 be the matrix of the operator EnT∆n.
Then, for all (I, J) ∈ (An)

2, we have :

|BI,J | = |〈ThI ,
1

|J | 12
1J〉|

6 |〈ThI ,
1

|J | 12
13I∩J〉|+ |〈ThI ,

1

|J | 12
1J\3I〉|

. 13I∩J 6=∅ +

ˆ

J\3I

|I| 12+α

|J | 12dist(x, I)1+α
dx

. 13I∩J 6=∅ +
|I|1+α

dist(I, J)1+α
13I∩J=∅.

Schur’s lemma gives us :
sup
n∈N

‖EnT∆n‖2→2 . 1.

The difference with what preceeds is that, for all (n,m) ∈ N2 such that n 6= m, we have

(EnT∆n)(EmT∆m)
∗ = 0

BUT
(EnT∆n)

∗(EmT∆m) 6= 0.

So, if we want to apply Cotlar’s lemma, we have to estimate the last quantity.
Let (n,m) ∈ N2 such that n 6= m.
We set

Sn,m = (EnT∆n)
∗(EmT∆m) = (∆nT

∗)(Einf{n,m}T∆m).

By symmetry, we can suppose that m < n. Hence

Sn,m = (∆nT
∗)(EmT∆m).

Let M = (MI,J)(I,J)∈An×Am
be the matix of the operator Sn,m.

∀(I, J) ∈ An ×Am,MI,J = 〈EnThI ,EmThJ〉.
For I ∈ An, we set

ωI(x) = C

( |I|
|I|+ dist(x, I)

)1+α

where C is the constant appearing in (⋆).
Then, for all (I, J) ∈ An ×Am, we have

|EnThI | 6
1

|I| 12
ωI and |EmThJ | 6

1

|J | 12
ωJ .

Thus, thanks to the triangle inequality, we have :

∀(I, J) ∈ An ×Am, |MI,J | 6
1

(|I||J |) 1
2

ˆ

R

ωI(x)ωJ(x)dx.

A simple calculus gives us :

∀(I, J) ∈ An ×Am,

ˆ

R

ωI(x)ωJ(x)dx . min{|I|, |J |}
( |I|+ |J |
|I|+ |J |+ dist(I, J)

)1+α

.
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So we have :

∀(I, J) ∈ An ×Am, |MI,J | . 2
m−n

2

( |J |
|J |+ dist(I, J)

)1+α

.

We set
An,m = sup

I∈An

∑

J∈Am

|MI,J | . 2
m−n

2 .

The problem is that we can’t sum over I. To be able to follow, we have to precise.
We set

An,m = {I ∈ An/∀J ∈ Am, dist(I, ∂J) 6 λ|I|} and Bn,m = An\An,m.

The constant λ has to be chosen with care.
We set

B1
n,m = sup

J∈Am

∑

I∈An,m

|MI,J | . 2
m−n

2 λ.

Now we have to estimate the sommation over Bn,m.
We have :

ˆ 1

0

EnThI(x)dx =

ˆ 1

0

ThI(x)dx = 〈1[0,1], ThI〉 = 〈T ∗1[0,1]︸ ︷︷ ︸
=0

, hI〉 = 0.

Let I ∈ An. Let Ia ∈ Am be the unique ancestor of I (it exists because m < n).
For all j ∈ Am, we set :

(ThJ)(Ia) =
1

|Ia|

ˆ

Ia

EmThJ(x)dx =
1

|Ia|

ˆ

Ia

ThJ(x)dx.

Then, for all (I, J) ∈ Bn,m ×Am, we have :

|MI,J | = |
ˆ

Ia

(EnThI(x))(ThJ)(Ia)dx+

ˆ

Ica

(EnThI(x)))(EmThJ(x))dx| (42)

= | −
ˆ

Ica

(EnThI(x))(ThJ)(Ia)dx+

ˆ

Ica

(EnThI(x))(EmThJ(x))dx| (43)

6 C

ˆ

Ica

1

|I| 12
ωI(x)dx

1

|Ia|

ˆ

Ia

1

|J | 12
ωJ(x)dx+

ˆ

Ica

1

(|I||J |) 1
2

ωI(x)ωJ(x)dx (44)

.

( |I|
|J |

) 1
2
( |J |
|J |+ dist(Ia, J)

)1+α
1

λα
. (45)

Thus we can set

B2
n,m sup

J∈Am

∑

I∈Bn,m

|MI,J | . 2
n−m

2
1

λα
.

Hence

An,m(B
1
n,m +B2

n,m) . 2m−nλ+
1

λα
.

For a good λ, we have finally :

An,m(B
1
n,m +B2

n,m) . 2
(n−m)α

1+α .

We just have to apply Cotlar’s lemma to end the proof of this theorem.
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